From fb7b624c877d6d7d9016b75f04c04e3b39c69761 Mon Sep 17 00:00:00 2001 From: NikkeDoy Date: Mon, 10 Feb 2025 12:44:42 +0200 Subject: [PATCH] :alembic: | Experimenting with very small model. --- discriminator.py | 9 ++++----- generator.py | 8 ++++---- training.py | 2 +- 3 files changed, 9 insertions(+), 10 deletions(-) diff --git a/discriminator.py b/discriminator.py index b800eda..b1d82e1 100644 --- a/discriminator.py +++ b/discriminator.py @@ -13,7 +13,7 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila class SISUDiscriminator(nn.Module): def __init__(self): super(SISUDiscriminator, self).__init__() - layers = 32 # Increased base layer count + layers = 4 # Increased base layer count self.model = nn.Sequential( # Initial Convolution discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample @@ -21,10 +21,9 @@ class SISUDiscriminator(nn.Module): # Core Discriminator Blocks with varied kernels and dilations discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4), - discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=16), - discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=8), - discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=2), - discriminator_block(layers * 2, layers, kernel_size=5, dilation=1), + discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=16), + discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=8), + discriminator_block(layers * 2, layers, kernel_size=3, dilation=1), # Final Convolution discriminator_block(layers, 1, kernel_size=3, stride=1), ) diff --git a/generator.py b/generator.py index 2446275..03fa279 100644 --- a/generator.py +++ b/generator.py @@ -10,7 +10,7 @@ def conv_block(in_channels, out_channels, kernel_size=3, dilation=1): class SISUGenerator(nn.Module): def __init__(self): super(SISUGenerator, self).__init__() - layer = 32 # Increased base layer count + layer = 4 # Increased base layer count self.conv1 = nn.Sequential( nn.Conv1d(1, layer, kernel_size=7, padding=3), nn.BatchNorm1d(layer), @@ -18,9 +18,9 @@ class SISUGenerator(nn.Module): ) self.conv_blocks = nn.Sequential( conv_block(layer, layer, kernel_size=3, dilation=1), # Local details - conv_block(layer, layer*4, kernel_size=5, dilation=2), # Local Context - conv_block(layer*4, layer*4, kernel_size=3, dilation=16), # Longer range dependencies - conv_block(layer*4, layer*2, kernel_size=5, dilation=8), # Wider context + conv_block(layer, layer*2, kernel_size=5, dilation=2), # Local Context + conv_block(layer*2, layer*2, kernel_size=3, dilation=16), # Longer range dependencies + conv_block(layer*2, layer*2, kernel_size=5, dilation=8), # Wider context conv_block(layer*2, layer, kernel_size=5, dilation=2), # Local Context conv_block(layer, layer, kernel_size=3, dilation=1), # Local details ) diff --git a/training.py b/training.py index e114817..6ee7116 100644 --- a/training.py +++ b/training.py @@ -85,7 +85,7 @@ dataset = AudioDataset(dataset_dir) # ========= SINGLE ========= -train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True) +train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True) # Initialize models and move them to device generator = SISUGenerator()