⚗️ | Experimenting still...
This commit is contained in:
155
training.py
155
training.py
@ -6,66 +6,73 @@ import torch.nn.functional as F
|
||||
import torchaudio
|
||||
import tqdm
|
||||
|
||||
import argparse
|
||||
|
||||
import math
|
||||
|
||||
from torch.utils.data import random_split
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import AudioUtils
|
||||
from data import AudioDataset
|
||||
from generator import SISUGenerator
|
||||
from discriminator import SISUDiscriminator
|
||||
|
||||
# Mel Spectrogram Loss
|
||||
class MelSpectrogramLoss(nn.Module):
|
||||
def __init__(self, sample_rate=44100, n_fft=2048, hop_length=512, n_mels=128):
|
||||
super(MelSpectrogramLoss, self).__init__()
|
||||
self.mel_transform = torchaudio.transforms.MelSpectrogram(
|
||||
sample_rate=sample_rate,
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_length,
|
||||
n_mels=n_mels
|
||||
).to(device) # Move to device
|
||||
def perceptual_loss(y_true, y_pred):
|
||||
return torch.mean((y_true - y_pred) ** 2)
|
||||
|
||||
def forward(self, y_pred, y_true):
|
||||
mel_pred = self.mel_transform(y_pred)
|
||||
mel_true = self.mel_transform(y_true)
|
||||
return F.l1_loss(mel_pred, mel_true)
|
||||
|
||||
def snr(y_true, y_pred):
|
||||
noise = y_true - y_pred
|
||||
signal_power = torch.mean(y_true ** 2)
|
||||
noise_power = torch.mean(noise ** 2)
|
||||
snr_db = 10 * torch.log10(signal_power / noise_power)
|
||||
return snr_db
|
||||
|
||||
def discriminator_train(high_quality, low_quality, scale, real_labels, fake_labels):
|
||||
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
|
||||
optimizer_d.zero_grad()
|
||||
|
||||
discriminator_decision_from_real = discriminator(high_quality)
|
||||
# TODO: Experiment with criterions HERE!
|
||||
# Forward pass for real samples
|
||||
discriminator_decision_from_real = discriminator(high_quality[0])
|
||||
d_loss_real = criterion_d(discriminator_decision_from_real, real_labels)
|
||||
|
||||
generator_output = generator(low_quality, scale)
|
||||
discriminator_decision_from_fake = discriminator(generator_output.detach())
|
||||
# TODO: Experiment with criterions HERE!
|
||||
integer_scale = math.ceil(high_quality[1]/low_quality[1])
|
||||
|
||||
# Forward pass for fake samples (from generator output)
|
||||
generator_output = generator(low_quality[0], integer_scale)
|
||||
resample_transform = torchaudio.transforms.Resample(low_quality[1] * integer_scale, high_quality[1]).to(device)
|
||||
resampled = resample_transform(generator_output.detach())
|
||||
|
||||
discriminator_decision_from_fake = discriminator(resampled)
|
||||
d_loss_fake = criterion_d(discriminator_decision_from_fake, fake_labels)
|
||||
|
||||
# Combine real and fake losses
|
||||
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||
|
||||
# Backward pass and optimization
|
||||
d_loss.backward()
|
||||
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) #Gradient Clipping
|
||||
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
|
||||
optimizer_d.step()
|
||||
|
||||
return d_loss
|
||||
|
||||
def generator_train(low_quality, scale, real_labels):
|
||||
def generator_train(low_quality, real_labels, target_sample_rate=44100):
|
||||
optimizer_g.zero_grad()
|
||||
|
||||
generator_output = generator(low_quality, scale)
|
||||
discriminator_decision = discriminator(generator_output)
|
||||
# TODO: Fix this shit
|
||||
scale = math.ceil(target_sample_rate/low_quality[1])
|
||||
|
||||
# Forward pass for fake samples (from generator output)
|
||||
generator_output = generator(low_quality[0], scale)
|
||||
resample_transform = torchaudio.transforms.Resample(low_quality[1] * scale, target_sample_rate).to(device)
|
||||
resampled = resample_transform(generator_output)
|
||||
|
||||
discriminator_decision = discriminator(resampled)
|
||||
g_loss = criterion_g(discriminator_decision, real_labels)
|
||||
|
||||
g_loss.backward()
|
||||
optimizer_g.step()
|
||||
return generator_output
|
||||
return resampled
|
||||
|
||||
# Init script argument parser
|
||||
parser = argparse.ArgumentParser(description="Training script")
|
||||
parser.add_argument("--generator", type=str, default=None,
|
||||
help="Path to the generator model file")
|
||||
parser.add_argument("--discriminator", type=str, default=None,
|
||||
help="Path to the discriminator model file")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Check for CUDA availability
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
@ -73,28 +80,38 @@ print(f"Using device: {device}")
|
||||
|
||||
# Initialize dataset and dataloader
|
||||
dataset_dir = './dataset/good'
|
||||
dataset = AudioDataset(dataset_dir, target_duration=2.0)
|
||||
dataset = AudioDataset(dataset_dir)
|
||||
|
||||
dataset_size = len(dataset)
|
||||
train_size = int(dataset_size * .9)
|
||||
val_size = int(dataset_size-train_size)
|
||||
# ========= MULTIPLE =========
|
||||
|
||||
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
||||
# dataset_size = len(dataset)
|
||||
# train_size = int(dataset_size * .9)
|
||||
# val_size = int(dataset_size-train_size)
|
||||
|
||||
train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
|
||||
val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
|
||||
#train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
||||
|
||||
# train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
|
||||
# val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
|
||||
|
||||
# ========= SINGLE =========
|
||||
|
||||
train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
|
||||
|
||||
# Initialize models and move them to device
|
||||
generator = SISUGenerator()
|
||||
discriminator = SISUDiscriminator()
|
||||
|
||||
if args.generator is not None:
|
||||
generator.load_state_dict(torch.load(args.generator, weights_only=True))
|
||||
if args.discriminator is not None:
|
||||
discriminator.load_state_dict(torch.load(args.discriminator, weights_only=True))
|
||||
|
||||
generator = generator.to(device)
|
||||
discriminator = discriminator.to(device)
|
||||
|
||||
# Loss
|
||||
criterion_g = nn.L1Loss()
|
||||
criterion_g_mel = MelSpectrogramLoss().to(device)
|
||||
criterion_d = nn.BCEWithLogitsLoss()
|
||||
criterion_d = nn.BCELoss()
|
||||
|
||||
# Optimizers
|
||||
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||
@ -109,39 +126,40 @@ def start_training():
|
||||
# Training loop
|
||||
|
||||
# ========= DISCRIMINATOR PRE-TRAINING =========
|
||||
discriminator_epochs = 1
|
||||
for discriminator_epoch in range(discriminator_epochs):
|
||||
# discriminator_epochs = 1
|
||||
# for discriminator_epoch in range(discriminator_epochs):
|
||||
|
||||
# ========= TRAINING =========
|
||||
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
|
||||
high_quality_sample = high_quality_clip[0].to(device)
|
||||
low_quality_sample = low_quality_clip[0].to(device)
|
||||
# # ========= TRAINING =========
|
||||
# for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
|
||||
# high_quality_sample = high_quality_clip[0].to(device)
|
||||
# low_quality_sample = low_quality_clip[0].to(device)
|
||||
|
||||
scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
|
||||
# scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
|
||||
|
||||
# ========= LABELS =========
|
||||
batch_size = high_quality_sample.size(0)
|
||||
real_labels = torch.ones(batch_size, 1).to(device)
|
||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
# # ========= LABELS =========
|
||||
# batch_size = high_quality_sample.size(0)
|
||||
# real_labels = torch.ones(batch_size, 1).to(device)
|
||||
# fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
|
||||
# ========= DISCRIMINATOR =========
|
||||
discriminator.train()
|
||||
discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
|
||||
# # ========= DISCRIMINATOR =========
|
||||
# discriminator.train()
|
||||
# discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
|
||||
|
||||
torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
|
||||
# torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
|
||||
|
||||
generator_epochs = 500
|
||||
generator_epochs = 5000
|
||||
for generator_epoch in range(generator_epochs):
|
||||
low_quality_audio = (torch.empty((1)), 1)
|
||||
high_quality_audio = (torch.empty((1)), 1)
|
||||
ai_enhanced_audio = (torch.empty((1)), 1)
|
||||
|
||||
times_correct = 0
|
||||
|
||||
# ========= TRAINING =========
|
||||
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
|
||||
high_quality_sample = high_quality_clip[0].to(device)
|
||||
low_quality_sample = low_quality_clip[0].to(device)
|
||||
|
||||
scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
|
||||
# for high_quality_clip, low_quality_clip in train_data_loader:
|
||||
high_quality_sample = (high_quality_clip[0].to(device), high_quality_clip[1])
|
||||
low_quality_sample = (low_quality_clip[0].to(device), low_quality_clip[1])
|
||||
|
||||
# ========= LABELS =========
|
||||
batch_size = high_quality_clip[0].size(0)
|
||||
@ -150,21 +168,20 @@ def start_training():
|
||||
|
||||
# ========= DISCRIMINATOR =========
|
||||
discriminator.train()
|
||||
for _ in range(3):
|
||||
discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
|
||||
discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels)
|
||||
|
||||
# ========= GENERATOR =========
|
||||
generator.train()
|
||||
generator_output = generator_train(low_quality_sample, scale, real_labels)
|
||||
generator_output = generator_train(low_quality_sample, real_labels, high_quality_sample[1])
|
||||
|
||||
# ========= SAVE LATEST AUDIO =========
|
||||
high_quality_audio = high_quality_clip
|
||||
low_quality_audio = low_quality_clip
|
||||
ai_enhanced_audio = (generator_output, high_quality_clip[1])
|
||||
|
||||
metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
|
||||
print(f"Generator metric {metric}!")
|
||||
scheduler_g.step(metric)
|
||||
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
|
||||
#print(f"Generator metric {metric}!")
|
||||
#scheduler_g.step(metric)
|
||||
|
||||
if generator_epoch % 10 == 0:
|
||||
print(f"Saved epoch {generator_epoch}!")
|
||||
|
Reference in New Issue
Block a user