🐛 | Fixed model and training
This commit is contained in:
68
training.py
68
training.py
@ -17,7 +17,7 @@ print(f"Using device: {device}")
|
||||
|
||||
# Initialize dataset and dataloader
|
||||
dataset_dir = './dataset/good'
|
||||
dataset = AudioDataset(dataset_dir, target_duration=2.0) # 5 seconds target duration
|
||||
dataset = AudioDataset(dataset_dir, target_duration=2.0)
|
||||
|
||||
dataset_size = len(dataset)
|
||||
train_size = int(dataset_size * .9)
|
||||
@ -35,9 +35,12 @@ discriminator = SISUDiscriminator()
|
||||
generator = generator.to(device)
|
||||
discriminator = discriminator.to(device)
|
||||
|
||||
# Loss and optimizers
|
||||
criterion = nn.MSELoss() # Use Mean Squared Error loss
|
||||
optimizer_g = optim.Adam(generator.parameters(), lr=0.0005, betas=(0.5, 0.999))
|
||||
# Loss
|
||||
criterion_g = nn.L1Loss() # Perceptual Loss (L1 instead of MSE)
|
||||
criterion_d = nn.MSELoss() # Can keep MSE for discriminator (optional)
|
||||
|
||||
# Optimizers
|
||||
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999)) # Reduced learning rate
|
||||
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||
|
||||
# Learning rate scheduler
|
||||
@ -45,11 +48,16 @@ scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min',
|
||||
|
||||
# Training loop
|
||||
num_epochs = 500
|
||||
lambda_gp = 10
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
original = torch.empty((2))
|
||||
crap_audio = torch.empty((2))
|
||||
for low_quality, high_quality in tqdm.tqdm(train_data_loader):
|
||||
low_quality_audio = torch.empty((1))
|
||||
high_quality_audio = torch.empty((1))
|
||||
ai_enhanced_audio = torch.empty((1))
|
||||
total_d_loss = 0
|
||||
total_g_loss = 0
|
||||
|
||||
# Training
|
||||
for low_quality, high_quality in tqdm.tqdm(train_data_loader, desc=f"Epoch {epoch+1}/{num_epochs}"):
|
||||
high_quality = high_quality.to(device)
|
||||
low_quality = low_quality.to(device)
|
||||
|
||||
@ -57,32 +65,44 @@ for epoch in range(num_epochs):
|
||||
real_labels = torch.ones(batch_size, 1).to(device)
|
||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
|
||||
real_outputs = discriminator(high_quality)
|
||||
fake_outputs = discriminator(generator(low_quality))
|
||||
###### Train Discriminator ######
|
||||
discriminator.train()
|
||||
optimizer_d.zero_grad()
|
||||
|
||||
d_loss_real = criterion(real_outputs, real_labels)
|
||||
d_loss_fake = criterion(fake_outputs, fake_labels)
|
||||
d_loss = (d_loss_real + d_loss_fake) * 0.5
|
||||
# 1. Real data
|
||||
real_outputs = discriminator(high_quality)
|
||||
d_loss_real = criterion_d(real_outputs, real_labels)
|
||||
|
||||
# 2. Fake data
|
||||
fake_audio = generator(low_quality)
|
||||
fake_outputs = discriminator(fake_audio.detach()) # Detach to stop gradient flow to the generator
|
||||
d_loss_fake = criterion_d(fake_outputs, fake_labels)
|
||||
|
||||
d_loss = (d_loss_real + d_loss_fake) / 2.0 # Without gradient penalty
|
||||
d_loss.backward()
|
||||
optimizer_d.step()
|
||||
total_d_loss += d_loss.item()
|
||||
|
||||
# Train Generator
|
||||
generator.train()
|
||||
optimizer_g.zero_grad()
|
||||
fake_audio = generator(low_quality)
|
||||
fake_outputs = discriminator(fake_audio)
|
||||
g_loss = criterion(fake_outputs, real_labels)
|
||||
|
||||
# Generator loss: how well fake data fools the discriminator
|
||||
fake_outputs = discriminator(fake_audio) # No detach here
|
||||
g_loss = criterion_g(fake_outputs, real_labels) # Train generator to produce real-like outputs
|
||||
|
||||
g_loss.backward()
|
||||
optimizer_g.step()
|
||||
total_g_loss += g_loss.item()
|
||||
|
||||
original = high_quality
|
||||
crap_audio = fake_audio
|
||||
low_quality_audio = low_quality
|
||||
high_quality_audio = high_quality
|
||||
ai_enhanced_audio = fake_audio
|
||||
|
||||
if epoch % 10 == 0:
|
||||
print(crap_audio.size())
|
||||
torchaudio.save(f"./epoch-{epoch}-audio.wav", crap_audio[0].cpu(), 44100)
|
||||
torchaudio.save(f"./epoch-{epoch}-audio-orig.wav", original[0].cpu(), 44100)
|
||||
|
||||
print(f'Epoch [{epoch+1}/{num_epochs}]')
|
||||
print(f"Saved epoch {epoch}!")
|
||||
torchaudio.save(f"./output/epoch-{epoch}-audio-crap.wav", low_quality_audio[0].cpu(), 44100)
|
||||
torchaudio.save(f"./output/epoch-{epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), 44100)
|
||||
torchaudio.save(f"./output/epoch-{epoch}-audio-orig.wav", high_quality_audio[0].cpu(), 44100)
|
||||
|
||||
torch.save(generator.state_dict(), "generator.pt")
|
||||
torch.save(discriminator.state_dict(), "discriminator.pt")
|
||||
|
Reference in New Issue
Block a user