🐛 | Fixed model and training

This commit is contained in:
2024-12-18 18:08:44 +02:00
parent 3bcc356eef
commit e43b2ab7ef
3 changed files with 71 additions and 52 deletions

View File

@@ -1,23 +1,17 @@
import torch.nn as nn
class SISUGenerator(nn.Module):
def __init__(self): # No noise_dim parameter
def __init__(self, upscale_scale=1): # No noise_dim parameter
super(SISUGenerator, self).__init__()
self.model = nn.Sequential(
nn.Conv1d(2, 64, kernel_size=7, stride=1, padding=3), # Input 2 channels (low-quality audio)
nn.LeakyReLU(0.2),
nn.Conv1d(64, 64, kernel_size=7, stride=1, padding=3),
nn.LeakyReLU(0.2),
nn.Conv1d(64, 128, kernel_size=5, stride=2, padding=2),
nn.LeakyReLU(0.2),
nn.Conv1d(128, 128, kernel_size=5, stride=1, padding=2),
nn.LeakyReLU(0.2),
nn.ConvTranspose1d(128, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2),
nn.Conv1d(64, 64, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.2),
nn.Conv1d(64, 2, kernel_size=3, stride=1, padding=1), # Output 2 channels (high-quality audio)
nn.Tanh()
nn.Conv1d(2, 128, kernel_size=3, padding=1),
nn.Conv1d(128, 256, kernel_size=3, padding=1),
nn.Upsample(scale_factor=upscale_scale, mode='nearest'),
nn.Conv1d(256, 128, kernel_size=3, padding=1),
nn.Conv1d(128, 64, kernel_size=3, padding=1),
nn.Conv1d(64, 2, kernel_size=3, padding=1)
)
def forward(self, x):