Merge pull request 'Merge the most successful implementation of this crap' (#2) from rt-test into main

Reviewed-on: #2
This commit is contained in:
2025-12-06 18:09:34 +02:00
13 changed files with 842 additions and 475 deletions

View File

@@ -1,18 +1,41 @@
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
def stereo_tensor_to_mono(waveform):
if waveform.shape[0] > 1:
# Average across channels
mono_waveform = torch.mean(waveform, dim=0, keepdim=True)
else:
# Already mono
mono_waveform = waveform
return mono_waveform
def stretch_tensor(tensor, target_length): def stereo_tensor_to_mono(waveform: torch.Tensor) -> torch.Tensor:
scale_factor = target_length / tensor.size(1) mono_tensor = torch.mean(waveform, dim=0, keepdim=True)
return mono_tensor
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
return tensor def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 512) -> torch.Tensor:
padding_amount = target_length - audio_tensor.size(-1)
if padding_amount <= 0:
return audio_tensor
padded_audio_tensor = F.pad(audio_tensor, (0, padding_amount))
return padded_audio_tensor
def split_audio(audio_tensor: torch.Tensor, chunk_size: int = 512, pad_last_tensor: bool = False) -> list[torch.Tensor]:
chunks = list(torch.split(audio_tensor, chunk_size, dim=1))
if pad_last_tensor:
last_chunk = chunks[-1]
if last_chunk.size(-1) < chunk_size:
chunks[-1] = pad_tensor(last_chunk, chunk_size)
return chunks
def reconstruct_audio(chunks: list[torch.Tensor]) -> torch.Tensor:
reconstructed_tensor = torch.cat(chunks, dim=-1)
return reconstructed_tensor
def normalize(audio_tensor: torch.Tensor, eps: float = 1e-8) -> torch.Tensor:
max_val = torch.max(torch.abs(audio_tensor))
if max_val < eps:
return audio_tensor
return audio_tensor / max_val

0
__init__.py Normal file
View File

128
app.py Normal file
View File

@@ -0,0 +1,128 @@
import argparse
import torch
import torchaudio
import torchcodec
import tqdm
from accelerate import Accelerator
import AudioUtils
from generator import SISUGenerator
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--model", type=str, help="Model to use for upscaling")
parser.add_argument(
"--clip_length",
type=int,
default=8000,
help="Internal clip length, leave unspecified if unsure",
)
parser.add_argument(
"--sample_rate", type=int, default=44100, help="Output clip sample rate"
)
parser.add_argument(
"--bitrate",
type=int,
default=192000,
help="Output clip bitrate",
)
parser.add_argument("-i", "--input", type=str, help="Input audio file")
parser.add_argument("-o", "--output", type=str, help="Output audio file")
args = parser.parse_args()
if args.sample_rate < 8000:
print(
"Sample rate cannot be lower than 8000! (44100 is recommended for base models)"
)
exit()
# ---------------------------
# Init accelerator
# ---------------------------
accelerator = Accelerator(mixed_precision="bf16")
# ---------------------------
# Models
# ---------------------------
generator = SISUGenerator()
accelerator.print("🔨 | Compiling models...")
generator = torch.compile(generator)
accelerator.print("✅ | Compiling done!")
# ---------------------------
# Prepare accelerator
# ---------------------------
generator = accelerator.prepare(generator)
# ---------------------------
# Checkpoint helpers
# ---------------------------
models_dir = args.model
clip_length = args.clip_length
input_audio = args.input
output_audio = args.output
if models_dir:
ckpt = torch.load(models_dir)
accelerator.unwrap_model(generator).load_state_dict(ckpt["G"])
accelerator.print("💾 | Loaded model!")
else:
print(
"Generator model (--model) isn't specified. Do you have the trained model? If not, you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)"
)
def start():
# To Mono!
decoder = torchcodec.decoders.AudioDecoder(input_audio)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data
original_sample_rate = decoded_samples.sample_rate
# Support for multichannel audio
# audio = AudioUtils.stereo_tensor_to_mono(audio)
audio = AudioUtils.normalize(audio)
resample_transform = torchaudio.transforms.Resample(
original_sample_rate, args.sample_rate
)
audio = resample_transform(audio)
splitted_audio = AudioUtils.split_audio(audio, clip_length)
splitted_audio_on_device = [t.view(1, t.shape[0], t.shape[-1]).to(accelerator.device) for t in splitted_audio]
processed_audio = []
with torch.no_grad():
for clip in tqdm.tqdm(splitted_audio_on_device, desc="Processing..."):
channels = []
for audio_channel in torch.split(clip, 1, dim=1):
output_piece = generator(audio_channel)
channels.append(output_piece.detach().cpu())
output_clip = torch.cat(channels, dim=1)
processed_audio.append(output_clip)
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
reconstructed_audio = reconstructed_audio.squeeze(0)
print(f"🔊 | Saving {output_audio}!")
torchaudio.save_with_torchcodec(
uri=output_audio,
src=reconstructed_audio,
sample_rate=args.sample_rate,
channels_first=True,
compression=args.bitrate,
)
start()

98
data.py
View File

@@ -1,53 +1,71 @@
from torch.utils.data import Dataset
import torch.nn.functional as F
import torch
import torchaudio
import os import os
import random import random
import torchaudio.transforms as T
import torch
import torchaudio
import torchcodec.decoders as decoders
import tqdm
from torch.utils.data import Dataset
import AudioUtils import AudioUtils
class AudioDataset(Dataset):
audio_sample_rates = [11025]
MAX_LENGTH = 44100 # Define your desired maximum length here
def __init__(self, input_dir, device): class AudioDataset(Dataset):
self.input_files = [os.path.join(root, f) for root, _, files in os.walk(input_dir) for f in files if f.endswith('.wav')] audio_sample_rates = [8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100]
self.device = device
def __init__(self, input_dir, clip_length: int = 512, normalize: bool = True):
self.clip_length = clip_length
self.normalize = normalize
input_files = [
os.path.join(input_dir, f)
for f in os.listdir(input_dir)
if os.path.isfile(os.path.join(input_dir, f))
and f.lower().endswith((".wav", ".mp3", ".flac"))
]
data = []
for audio_clip in tqdm.tqdm(
input_files, desc=f"Processing {len(input_files)} audio file(s)"
):
decoder = decoders.AudioDecoder(audio_clip)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data.float()
original_sample_rate = decoded_samples.sample_rate
if normalize:
audio = AudioUtils.normalize(audio)
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length, True)
if not splitted_high_quality_audio:
continue
for splitted_audio_clip in splitted_high_quality_audio:
for audio_clip in torch.split(splitted_audio_clip, 1):
data.append((audio_clip, original_sample_rate))
self.audio_data = data
def __len__(self): def __len__(self):
return len(self.input_files) return len(self.audio_data)
def __getitem__(self, idx): def __getitem__(self, idx):
# Load high-quality audio audio_clip = self.audio_data[idx]
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
# Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates) mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_transform_low(high_quality_audio)
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate) resample_transform_low = torchaudio.transforms.Resample(
low_quality_audio = resample_transform_high(low_quality_audio) audio_clip[1], mangled_sample_rate
)
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio) resample_transform_high = torchaudio.transforms.Resample(
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio) mangled_sample_rate, audio_clip[1]
)
# Pad or truncate high-quality audio low_audio_clip = resample_transform_high(resample_transform_low(audio_clip[0]))
if high_quality_audio.shape[1] < self.MAX_LENGTH: if audio_clip[0].shape[1] < low_audio_clip.shape[1]:
padding = self.MAX_LENGTH - high_quality_audio.shape[1] low_audio_clip = low_audio_clip[:, :audio_clip[0].shape[1]]
high_quality_audio = F.pad(high_quality_audio, (0, padding)) elif audio_clip[0].shape[1] > low_audio_clip.shape[1]:
elif high_quality_audio.shape[1] > self.MAX_LENGTH: low_audio_clip = AudioUtils.pad_tensor(low_audio_clip, self.clip_length)
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH] return ((audio_clip[0], low_audio_clip), (audio_clip[1], mangled_sample_rate))
# Pad or truncate low-quality audio
if low_quality_audio.shape[1] < self.MAX_LENGTH:
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
low_quality_audio = F.pad(low_quality_audio, (0, padding))
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
high_quality_audio = high_quality_audio.to(self.device)
low_quality_audio = low_quality_audio.to(self.device)
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)

View File

@@ -1,63 +1,179 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.utils as utils import torch.nn.functional as F
from torch.nn.utils.parametrizations import weight_norm, spectral_norm
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True, use_instance_norm=True): # -------------------------------------------------------------------
padding = (kernel_size // 2) * dilation # 1. Multi-Period Discriminator (MPD)
conv_layer = nn.Conv1d( # Captures periodic structures (pitch/timbre) by folding audio.
in_channels, # -------------------------------------------------------------------
out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=padding
)
if spectral_norm: class DiscriminatorP(nn.Module):
conv_layer = utils.spectral_norm(conv_layer) def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super(DiscriminatorP, self).__init__()
self.period = period
self.use_spectral_norm = use_spectral_norm
layers = [conv_layer] # Use spectral_norm for stability, or weight_norm for performance
layers.append(nn.LeakyReLU(0.2, inplace=True)) norm_f = spectral_norm if use_spectral_norm else weight_norm
if use_instance_norm: # We use 2D convs because we "fold" the 1D audio into 2D (Period x Time)
layers.append(nn.InstanceNorm1d(out_channels)) self.convs = nn.ModuleList([
norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(2, 0))),
norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(2, 0))),
norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(2, 0))),
norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(2, 0))),
norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
])
return nn.Sequential(*layers) self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
class AttentionBlock(nn.Module):
def __init__(self, channels):
super(AttentionBlock, self).__init__()
self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x): def forward(self, x):
attention_weights = self.attention(x) fmap = []
return x * attention_weights
# 1d to 2d conversion: [B, C, T] -> [B, C, T/P, P]
b, c, t = x.shape
if t % self.period != 0: # Pad if not divisible by period
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, 0.1)
fmap.append(x) # Store feature map for Feature Matching Loss
x = self.conv_post(x)
fmap.append(x)
# Flatten back to 1D for score
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiPeriodDiscriminator(nn.Module):
def __init__(self, periods=[2, 3, 5, 7, 11]):
super(MultiPeriodDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorP(p) for p in periods
])
def forward(self, y, y_hat):
y_d_rs = [] # Real scores
y_d_gs = [] # Generated (Fake) scores
fmap_rs = [] # Real feature maps
fmap_gs = [] # Generated (Fake) feature maps
for i, d in enumerate(self.discriminators):
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
# -------------------------------------------------------------------
# 2. Multi-Scale Discriminator (MSD)
# Captures structure at different audio resolutions (raw, x0.5, x0.25).
# -------------------------------------------------------------------
class DiscriminatorS(nn.Module):
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = spectral_norm if use_spectral_norm else weight_norm
# Standard 1D Convolutions with large receptive field
self.convs = nn.ModuleList([
norm_f(nn.Conv1d(1, 16, 15, 1, padding=7)),
norm_f(nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)),
norm_f(nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)),
norm_f(nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
norm_f(nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
fmap = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, 0.1)
fmap.append(x)
x = self.conv_post(x)
fmap.append(x)
x = torch.flatten(x, 1, -1)
return x, fmap
class MultiScaleDiscriminator(nn.Module):
def __init__(self):
super(MultiScaleDiscriminator, self).__init__()
# 3 Scales: Original, Downsampled x2, Downsampled x4
self.discriminators = nn.ModuleList([
DiscriminatorS(use_spectral_norm=True),
DiscriminatorS(),
DiscriminatorS(),
])
self.meanpools = nn.ModuleList([
nn.AvgPool1d(4, 2, padding=2),
nn.AvgPool1d(4, 2, padding=2)
])
def forward(self, y, y_hat):
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for i, d in enumerate(self.discriminators):
if i != 0:
# Downsample input for subsequent discriminators
y = self.meanpools[i-1](y)
y_hat = self.meanpools[i-1](y_hat)
y_d_r, fmap_r = d(y)
y_d_g, fmap_g = d(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
# -------------------------------------------------------------------
# 3. Master Wrapper
# Combines MPD and MSD into one class to fit your training script.
# -------------------------------------------------------------------
class SISUDiscriminator(nn.Module): class SISUDiscriminator(nn.Module):
def __init__(self, base_channels=16): def __init__(self):
super(SISUDiscriminator, self).__init__() super(SISUDiscriminator, self).__init__()
layers = base_channels self.mpd = MultiPeriodDiscriminator()
self.model = nn.Sequential( self.msd = MultiScaleDiscriminator()
discriminator_block(1, layers, kernel_size=7, stride=1, spectral_norm=True, use_instance_norm=False),
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True), def forward(self, y, y_hat):
discriminator_block(layers * 2, layers * 4, kernel_size=5, stride=1, dilation=2, spectral_norm=True, use_instance_norm=True), # Return format:
AttentionBlock(layers * 4), # scores_real, scores_fake, features_real, features_fake
discriminator_block(layers * 4, layers * 8, kernel_size=5, stride=1, dilation=4, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers * 8, layers * 4, kernel_size=5, stride=2, spectral_norm=True, use_instance_norm=True), # Run Multi-Period
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True), mpd_y_d_rs, mpd_y_d_gs, mpd_fmap_rs, mpd_fmap_gs = self.mpd(y, y_hat)
discriminator_block(layers * 2, layers, kernel_size=3, stride=1, spectral_norm=True, use_instance_norm=True),
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False, use_instance_norm=False) # Run Multi-Scale
msd_y_d_rs, msd_y_d_gs, msd_fmap_rs, msd_fmap_gs = self.msd(y, y_hat)
# Combine all results
return (
mpd_y_d_rs + msd_y_d_rs, # All real scores
mpd_y_d_gs + msd_y_d_gs, # All fake scores
mpd_fmap_rs + msd_fmap_rs, # All real feature maps
mpd_fmap_gs + msd_fmap_gs # All fake feature maps
) )
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
def forward(self, x):
x = self.model(x)
x = self.global_avg_pool(x)
x = x.view(x.size(0), -1)
return x

View File

@@ -1,28 +0,0 @@
import json
filepath = "my_data.json"
def write_data(filepath, data):
try:
with open(filepath, 'w') as f:
json.dump(data, f, indent=4) # Use indent for pretty formatting
print(f"Data written to '{filepath}'")
except Exception as e:
print(f"Error writing to file: {e}")
def read_data(filepath):
try:
with open(filepath, 'r') as f:
data = json.load(f)
print(f"Data read from '{filepath}'")
return data
except FileNotFoundError:
print(f"File not found: {filepath}")
return None
except json.JSONDecodeError:
print(f"Error decoding JSON from file: {filepath}")
return None
except Exception as e:
print(f"Error reading from file: {e}")
return None

View File

@@ -1,42 +1,45 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
from torch.nn.utils.parametrizations import weight_norm
def GeneratorBlock(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
padding = (kernel_size - 1) // 2 * dilation
def conv_block(in_channels, out_channels, kernel_size=3, dilation=1):
return nn.Sequential( return nn.Sequential(
nn.Conv1d(
weight_norm(nn.Conv1d(
in_channels, in_channels,
out_channels, out_channels,
kernel_size=kernel_size, kernel_size=kernel_size,
stride=stride,
dilation=dilation, dilation=dilation,
padding=(kernel_size // 2) * dilation padding=padding
), )),
nn.InstanceNorm1d(out_channels), nn.PReLU(num_parameters=1, init=0.1),
nn.PReLU()
) )
class AttentionBlock(nn.Module): class AttentionBlock(nn.Module):
"""
Simple Channel Attention Block. Learns to weight channels based on their importance.
"""
def __init__(self, channels): def __init__(self, channels):
super(AttentionBlock, self).__init__() super(AttentionBlock, self).__init__()
self.attention = nn.Sequential( self.attention = nn.Sequential(
nn.Conv1d(channels, channels // 4, kernel_size=1), weight_norm(nn.Conv1d(channels, channels // 4, kernel_size=1)),
nn.ReLU(inplace=True), nn.ReLU(inplace=True),
nn.Conv1d(channels // 4, channels, kernel_size=1), weight_norm(nn.Conv1d(channels // 4, channels, kernel_size=1)),
nn.Sigmoid() nn.Sigmoid(),
) )
def forward(self, x): def forward(self, x):
attention_weights = self.attention(x) attention_weights = self.attention(x)
return x * attention_weights return x + (x * attention_weights)
class ResidualInResidualBlock(nn.Module): class ResidualInResidualBlock(nn.Module):
def __init__(self, channels, num_convs=3): def __init__(self, channels, num_convs=3):
super(ResidualInResidualBlock, self).__init__() super(ResidualInResidualBlock, self).__init__()
self.conv_layers = nn.Sequential( self.conv_layers = nn.Sequential(
*[conv_block(channels, channels) for _ in range(num_convs)] *[GeneratorBlock(channels, channels) for _ in range(num_convs)]
) )
self.attention = AttentionBlock(channels) self.attention = AttentionBlock(channels)
@@ -47,28 +50,77 @@ class ResidualInResidualBlock(nn.Module):
x = self.attention(x) x = self.attention(x)
return x + residual return x + residual
def UpsampleBlock(in_channels, out_channels, scale_factor=2):
return nn.Sequential(
nn.Upsample(scale_factor=scale_factor, mode='nearest'),
weight_norm(nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1
)),
nn.PReLU(num_parameters=1, init=0.1)
)
class SISUGenerator(nn.Module): class SISUGenerator(nn.Module):
def __init__(self, channels=16, num_rirb=4, alpha=1.0): def __init__(self, channels=32, num_rirb=4):
super(SISUGenerator, self).__init__() super(SISUGenerator, self).__init__()
self.alpha = alpha
self.conv1 = nn.Sequential( self.first_conv = GeneratorBlock(1, channels)
nn.Conv1d(1, channels, kernel_size=7, padding=3),
nn.InstanceNorm1d(channels), self.downsample = GeneratorBlock(channels, channels * 2, stride=2)
nn.PReLU(), self.downsample_attn = AttentionBlock(channels * 2)
self.downsample_2 = GeneratorBlock(channels * 2, channels * 4, stride=2)
self.downsample_2_attn = AttentionBlock(channels * 4)
self.rirb = nn.Sequential(
*[ResidualInResidualBlock(channels * 4) for _ in range(num_rirb)]
) )
self.rir_blocks = nn.Sequential( self.upsample = UpsampleBlock(channels * 4, channels * 2)
*[ResidualInResidualBlock(channels) for _ in range(num_rirb)] self.upsample_attn = AttentionBlock(channels * 2)
self.compress_1 = GeneratorBlock(channels * 4, channels * 2)
self.upsample_2 = UpsampleBlock(channels * 2, channels)
self.upsample_2_attn = AttentionBlock(channels)
self.compress_2 = GeneratorBlock(channels * 2, channels)
self.final_conv = nn.Sequential(
weight_norm(nn.Conv1d(channels, 1, kernel_size=7, padding=3)),
nn.Tanh()
) )
self.final_layer = nn.Conv1d(channels, 1, kernel_size=3, padding=1)
def forward(self, x): def forward(self, x):
residual_input = x residual_input = x
x = self.conv1(x)
x_rirb_out = self.rir_blocks(x)
learned_residual = self.final_layer(x_rirb_out)
output = residual_input + self.alpha * learned_residual
# Encoding
x1 = self.first_conv(x)
x2 = self.downsample(x1)
x2 = self.downsample_attn(x2)
x3 = self.downsample_2(x2)
x3 = self.downsample_2_attn(x3)
# Bottleneck (Deep Residual processing)
x_rirb = self.rirb(x3)
# Decoding with Skip Connections
up1 = self.upsample(x_rirb)
up1 = self.upsample_attn(up1)
cat1 = torch.cat((up1, x2), dim=1)
comp1 = self.compress_1(cat1)
up2 = self.upsample_2(comp1)
up2 = self.upsample_2_attn(up2)
cat2 = torch.cat((up2, x1), dim=1)
comp2 = self.compress_2(cat2)
learned_residual = self.final_conv(comp2)
output = residual_input + learned_residual
return output return output

View File

@@ -1,12 +0,0 @@
filelock==3.16.1
fsspec==2024.10.0
Jinja2==3.1.4
MarkupSafe==2.1.5
mpmath==1.3.0
networkx==3.4.2
numpy==2.2.3
pillow==11.0.0
setuptools==70.2.0
sympy==1.13.3
tqdm==4.67.1
typing_extensions==4.12.2

View File

@@ -1,194 +1,247 @@
import argparse
import datetime
import os
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.optim as optim import torch.optim as optim
import torch.nn.functional as F
import torchaudio
import tqdm import tqdm
from accelerate import Accelerator
from torch.utils.data import DataLoader, DistributedSampler
import argparse
import math
import os
from torch.utils.data import random_split
from torch.utils.data import DataLoader
import AudioUtils
from data import AudioDataset from data import AudioDataset
from generator import SISUGenerator
from discriminator import SISUDiscriminator from discriminator import SISUDiscriminator
from generator import SISUGenerator
from utils.TrainingTools import discriminator_train, generator_train
from training_utils import discriminator_train, generator_train # ---------------------------
import file_utils as Data # Argument parsing
# ---------------------------
import torchaudio.transforms as T parser = argparse.ArgumentParser(description="Training script (safer defaults)")
parser.add_argument("--resume", action="store_true", help="Resume training")
# Init script argument parser parser.add_argument(
parser = argparse.ArgumentParser(description="Training script") "--epochs", type=int, default=5000, help="Number of training epochs"
parser.add_argument("--generator", type=str, default=None, )
help="Path to the generator model file") parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
parser.add_argument("--discriminator", type=str, default=None, parser.add_argument("--num_workers", type=int, default=4, help="DataLoader num_workers") # Increased workers slightly
help="Path to the discriminator model file") parser.add_argument("--debug", action="store_true", help="Print debug logs")
parser.add_argument("--device", type=str, default="cpu", help="Select device") parser.add_argument(
parser.add_argument("--epoch", type=int, default=0, help="Current epoch for model versioning") "--no_pin_memory", action="store_true", help="Disable pin_memory even on CUDA"
parser.add_argument("--debug", action="store_true", help="Print debug logs") )
parser.add_argument("--continue_training", action="store_true", help="Continue training using temp_generator and temp_discriminator models")
args = parser.parse_args() args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu") # ---------------------------
print(f"Using device: {device}") # Init accelerator
# ---------------------------
# Parameters accelerator = Accelerator(mixed_precision="bf16")
sample_rate = 44100
n_fft = 2048
hop_length = 256
win_length = n_fft
n_mels = 128
n_mfcc = 20 # If using MFCC
mfcc_transform = T.MFCC(
sample_rate,
n_mfcc,
melkwargs = {'n_fft': n_fft, 'hop_length': hop_length}
).to(device)
mel_transform = T.MelSpectrogram(
sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length,
win_length=win_length, n_mels=n_mels, power=1.0 # Magnitude Mel
).to(device)
stft_transform = T.Spectrogram(
n_fft=n_fft, win_length=win_length, hop_length=hop_length
).to(device)
debug = args.debug
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, device)
models_dir = "models"
os.makedirs(models_dir, exist_ok=True)
audio_output_dir = "output"
os.makedirs(audio_output_dir, exist_ok=True)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
# ========= MODELS =========
# ---------------------------
# Models
# ---------------------------
generator = SISUGenerator() generator = SISUGenerator()
# Note: SISUDiscriminator is now an Ensemble (MPD + MSD)
discriminator = SISUDiscriminator() discriminator = SISUDiscriminator()
epoch: int = args.epoch accelerator.print("🔨 | Compiling models...")
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
if args.continue_training: # Torch compile is great, but if you hit errors with the new List/Tuple outputs
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True)) # of the discriminator, you might need to disable it for D.
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True)) generator = torch.compile(generator)
epoch = epoch_from_file["epoch"] + 1 discriminator = torch.compile(discriminator)
else:
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
if args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
generator = generator.to(device) accelerator.print("✅ | Compiling done!")
discriminator = discriminator.to(device)
# Loss # ---------------------------
criterion_g = nn.BCEWithLogitsLoss() # Dataset / DataLoader
criterion_d = nn.BCEWithLogitsLoss() # ---------------------------
accelerator.print("📊 | Fetching dataset...")
dataset = AudioDataset("./dataset", 8192)
# Optimizers sampler = DistributedSampler(dataset) if accelerator.num_processes > 1 else None
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999)) pin_memory = torch.cuda.is_available() and not args.no_pin_memory
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
# Scheduler train_loader = DataLoader(
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5) dataset,
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5) sampler=sampler,
batch_size=args.batch_size,
shuffle=(sampler is None),
num_workers=args.num_workers,
pin_memory=pin_memory,
persistent_workers=pin_memory,
)
def start_training(): if not train_loader or not train_loader.batch_size or train_loader.batch_size == 0:
generator_epochs = 5000 accelerator.print("🪹 | There is no data to train with! Exiting...")
for generator_epoch in range(generator_epochs): exit()
low_quality_audio = (torch.empty((1)), 1)
high_quality_audio = (torch.empty((1)), 1)
ai_enhanced_audio = (torch.empty((1)), 1)
times_correct = 0 loader_batch_size = train_loader.batch_size
# ========= TRAINING ========= accelerator.print("✅ | Dataset fetched!")
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
# for high_quality_clip, low_quality_clip in train_data_loader:
high_quality_sample = (high_quality_clip[0], high_quality_clip[1])
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
# ========= LABELS ========= # ---------------------------
batch_size = high_quality_clip[0].size(0) # Losses / Optimizers / Scalers
real_labels = torch.ones(batch_size, 1).to(device) # ---------------------------
fake_labels = torch.zeros(batch_size, 1).to(device)
# ========= DISCRIMINATOR ========= optimizer_g = optim.AdamW(
discriminator.train() generator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
d_loss = discriminator_train( )
high_quality_sample, optimizer_d = optim.AdamW(
low_quality_sample, discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999), weight_decay=0.0001
real_labels, )
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
# ========= GENERATOR ========= scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(
generator.train() optimizer_g, mode="min", factor=0.5, patience=5
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train( )
low_quality_sample, scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(
high_quality_sample, optimizer_d, mode="min", factor=0.5, patience=5
real_labels, )
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
if debug: # ---------------------------
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}") # Prepare accelerator
scheduler_d.step(d_loss.detach()) # ---------------------------
scheduler_g.step(adversarial_loss.detach())
# ========= SAVE LATEST AUDIO ========= generator, discriminator, optimizer_g, optimizer_d, train_loader = accelerator.prepare(
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0]) generator, discriminator, optimizer_g, optimizer_d, train_loader
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0]) )
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0])
new_epoch = generator_epoch+epoch # ---------------------------
# Checkpoint helpers
if generator_epoch % 25 == 0: # ---------------------------
print(f"Saved epoch {new_epoch}!") models_dir = "./models"
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again. os.makedirs(models_dir, exist_ok=True)
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
#if debug:
# print(generator.state_dict().keys())
# print(discriminator.state_dict().keys())
torch.save(discriminator.state_dict(), f"{models_dir}/temp_discriminator.pt")
torch.save(generator.state_dict(), f"{models_dir}/temp_generator.pt")
Data.write_data(f"{models_dir}/epoch_data.json", {"epoch": new_epoch})
torch.save(discriminator, "models/epoch-5000-discriminator.pt") def save_ckpt(path, epoch, loss=None, is_best=False):
torch.save(generator, "models/epoch-5000-generator.pt") accelerator.wait_for_everyone()
print("Training complete!") if accelerator.is_main_process:
state = {
"epoch": epoch,
"G": accelerator.unwrap_model(generator).state_dict(),
"D": accelerator.unwrap_model(discriminator).state_dict(),
"optG": optimizer_g.state_dict(),
"optD": optimizer_d.state_dict(),
"schedG": scheduler_g.state_dict(),
"schedD": scheduler_d.state_dict()
}
start_training() accelerator.save(state, os.path.join(models_dir, "last.pt"))
if is_best:
accelerator.save(state, os.path.join(models_dir, "best.pt"))
accelerator.print(f"🌟 | New best model saved with G Loss: {loss:.4f}")
start_epoch = 0
if args.resume:
ckpt_path = os.path.join(models_dir, "last.pt")
if os.path.exists(ckpt_path):
ckpt = torch.load(ckpt_path)
accelerator.unwrap_model(generator).load_state_dict(ckpt["G"])
accelerator.unwrap_model(discriminator).load_state_dict(ckpt["D"])
optimizer_g.load_state_dict(ckpt["optG"])
optimizer_d.load_state_dict(ckpt["optD"])
scheduler_g.load_state_dict(ckpt["schedG"])
scheduler_d.load_state_dict(ckpt["schedD"])
start_epoch = ckpt.get("epoch", 1)
accelerator.print(f"🔁 | Resumed from epoch {start_epoch}!")
else:
accelerator.print("⚠️ | Resume requested but no checkpoint found. Starting fresh.")
accelerator.print("🏋️ | Started training...")
try:
for epoch in range(start_epoch, args.epochs):
generator.train()
discriminator.train()
discriminator_time = 0
generator_time = 0
running_d, running_g, steps = 0.0, 0.0, 0
progress_bar = tqdm.tqdm(train_loader, desc=f"Epoch {epoch} | D {discriminator_time}μs | G {generator_time}μs")
for i, (
(high_quality, low_quality),
(high_sample_rate, low_sample_rate),
) in enumerate(progress_bar):
with accelerator.autocast():
generator_output = generator(low_quality)
# --- Discriminator ---
d_time = datetime.datetime.now()
optimizer_d.zero_grad(set_to_none=True)
with accelerator.autocast():
d_loss = discriminator_train(
high_quality,
discriminator,
generator_output.detach()
)
accelerator.backward(d_loss)
optimizer_d.step()
discriminator_time = (datetime.datetime.now() - d_time).microseconds
# --- Generator ---
g_time = datetime.datetime.now()
optimizer_g.zero_grad(set_to_none=True)
with accelerator.autocast():
g_total, g_adv = generator_train(
low_quality,
high_quality,
generator,
discriminator,
generator_output
)
accelerator.backward(g_total)
torch.nn.utils.clip_grad_norm_(generator.parameters(), 1)
optimizer_g.step()
generator_time = (datetime.datetime.now() - g_time).microseconds
d_val = accelerator.gather(d_loss.detach()).mean()
g_val = accelerator.gather(g_total.detach()).mean()
if torch.isfinite(d_val):
running_d += d_val.item()
else:
accelerator.print(
f"🫥 | NaN in discriminator loss at step {i}, skipping update."
)
if torch.isfinite(g_val):
running_g += g_val.item()
else:
accelerator.print(
f"🫥 | NaN in generator loss at step {i}, skipping update."
)
steps += 1
progress_bar.set_description(f"Epoch {epoch} | D {discriminator_time}μs | G {generator_time}μs")
if steps == 0:
accelerator.print("🪹 | No steps in epoch (empty dataloader?). Exiting.")
break
mean_d = running_d / steps
mean_g = running_g / steps
scheduler_d.step(mean_d)
scheduler_g.step(mean_g)
save_ckpt(os.path.join(models_dir, "last.pt"), epoch)
accelerator.print(f"🤝 | Epoch {epoch} done | D {mean_d:.4f} | G {mean_g:.4f}")
except Exception:
try:
save_ckpt(os.path.join(models_dir, "crash_last.pt"), epoch)
accelerator.print(f"💾 | Saved crash checkpoint for epoch {epoch}")
except Exception as e:
accelerator.print("😬 | Failed saving crash checkpoint:", e)
raise
accelerator.print("🏁 | Training finished.")

View File

@@ -1,144 +0,0 @@
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import torchaudio.transforms as T
def gpu_mfcc_loss(mfcc_transform, y_true, y_pred):
mfccs_true = mfcc_transform(y_true)
mfccs_pred = mfcc_transform(y_pred)
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len]
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
# Ensure same time dimension length (due to potential framing differences)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
# L1 Loss (Mean Absolute Error)
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
return loss
def mel_spectrogram_l2_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len]
loss = torch.mean((mel_spec_true - mel_spec_pred)**2)
return loss
def log_stft_magnitude_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
loss = torch.mean(torch.abs(torch.log(stft_mag_true + eps) - torch.log(stft_mag_pred + eps)))
return loss
def spectral_convergence_loss(stft_transform: T.Spectrogram, y_true: torch.Tensor, y_pred: torch.Tensor, eps: float = 1e-7) -> torch.Tensor:
stft_mag_true = stft_transform(y_true)
stft_mag_pred = stft_transform(y_pred)
min_len = min(stft_mag_true.shape[-1], stft_mag_pred.shape[-1])
stft_mag_true = stft_mag_true[..., :min_len]
stft_mag_pred = stft_mag_pred[..., :min_len]
norm_true = torch.linalg.norm(stft_mag_true, ord='fro', dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, ord='fro', dim=(-2, -1))
loss = torch.mean(norm_diff / (norm_true + eps))
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels, discriminator, generator, criterion, optimizer):
optimizer.zero_grad()
# Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0])
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
with torch.no_grad():
generator_output = generator(low_quality[0])
discriminator_decision_from_fake = discriminator(generator_output)
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
d_loss = (d_loss_real + d_loss_fake) / 2.0
d_loss.backward()
# Optional: Gradient Clipping (can be helpful)
# nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) # Gradient Clipping
optimizer.step()
return d_loss
def generator_train(
low_quality,
high_quality,
real_labels,
generator,
discriminator,
adv_criterion,
g_optimizer,
device,
mel_transform: T.MelSpectrogram,
stft_transform: T.Spectrogram,
mfcc_transform: T.MFCC,
lambda_adv: float = 1.0,
lambda_mel_l1: float = 10.0,
lambda_log_stft: float = 1.0,
lambda_mfcc: float = 1.0
):
g_optimizer.zero_grad()
generator_output = generator(low_quality[0])
discriminator_decision = discriminator(generator_output)
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
mel_l1 = 0.0
log_stft_l1 = 0.0
mfcc_l = 0.0
# Calculate Mel L1 Loss if weight is positive
if lambda_mel_l1 > 0:
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
# Calculate Log STFT L1 Loss if weight is positive
if lambda_log_stft > 0:
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output)
# Calculate MFCC Loss if weight is positive
if lambda_mfcc > 0:
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output)
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
mfcc_l_tensor = torch.tensor(mfcc_l, device=device) if isinstance(mfcc_l, float) else mfcc_l
combined_loss = (lambda_adv * adversarial_loss) + \
(lambda_mel_l1 * mel_l1_tensor) + \
(lambda_log_stft * log_stft_l1_tensor) + \
(lambda_mfcc * mfcc_l_tensor)
combined_loss.backward()
# Optional: Gradient Clipping
# nn.utils.clip_grad_norm_(generator.parameters(), max_norm=1.0)
g_optimizer.step()
# 6. Return values for logging
return generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor

View File

@@ -0,0 +1,68 @@
from typing import Dict, List
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio.transforms as T
class MultiResolutionSTFTLoss(nn.Module):
def __init__(
self,
fft_sizes: List[int] = [512, 1024, 2048, 4096, 8192],
hop_sizes: List[int] = [64, 128, 256, 512, 1024],
win_lengths: List[int] = [256, 512, 1024, 2048, 4096],
eps: float = 1e-7,
center: bool = True
):
super().__init__()
self.eps = eps
self.n_resolutions = len(fft_sizes)
self.stft_transforms = nn.ModuleList()
for i, (n_fft, hop_len, win_len) in enumerate(zip(fft_sizes, hop_sizes, win_lengths)):
stft = T.Spectrogram(
n_fft=n_fft,
hop_length=hop_len,
win_length=win_len,
window_fn=torch.hann_window,
power=None,
center=center,
pad_mode="reflect",
normalized=False,
)
self.stft_transforms.append(stft)
def forward(
self, y_true: torch.Tensor, y_pred: torch.Tensor
) -> Dict[str, torch.Tensor]:
if y_true.dim() == 3 and y_true.size(1) == 1:
y_true = y_true.squeeze(1)
if y_pred.dim() == 3 and y_pred.size(1) == 1:
y_pred = y_pred.squeeze(1)
sc_loss = 0.0
mag_loss = 0.0
for stft in self.stft_transforms:
stft.window = stft.window.to(y_true.device)
stft_true = stft(y_true)
stft_pred = stft(y_pred)
stft_mag_true = torch.abs(stft_true)
stft_mag_pred = torch.abs(stft_pred)
norm_true = torch.linalg.norm(stft_mag_true, dim=(-2, -1))
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, dim=(-2, -1))
sc_loss += torch.mean(norm_diff / (norm_true + self.eps))
log_mag_pred = torch.log(stft_mag_pred + self.eps)
log_mag_true = torch.log(stft_mag_true + self.eps)
mag_loss += F.l1_loss(log_mag_pred, log_mag_true)
sc_loss /= self.n_resolutions
mag_loss /= self.n_resolutions
total_loss = sc_loss + mag_loss
return {"total": total_loss, "sc": sc_loss, "mag": mag_loss}

93
utils/TrainingTools.py Normal file
View File

@@ -0,0 +1,93 @@
import torch
import torch.nn.functional as F
from utils.MultiResolutionSTFTLoss import MultiResolutionSTFTLoss
# Keep STFT settings as is
stft_loss_fn = MultiResolutionSTFTLoss(
fft_sizes=[512, 1024, 2048],
hop_sizes=[64, 128, 256],
win_lengths=[256, 512, 1024]
)
def feature_matching_loss(fmap_r, fmap_g):
"""
Computes L1 distance between real and fake feature maps.
"""
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
rl = rl.detach()
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
"""
Least Squares GAN Loss (LSGAN) for the Discriminator.
Objective: Real -> 1, Fake -> 0
"""
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((dr - 1) ** 2)
g_loss = torch.mean(dg ** 2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_adv_loss(disc_generated_outputs):
"""
Least Squares GAN Loss for the Generator.
Objective: Fake -> 1 (Fool the discriminator)
"""
loss = 0
for dg in zip(disc_generated_outputs):
dg = dg[0] # Unpack tuple
loss += torch.mean((dg - 1) ** 2)
return loss
def discriminator_train(
high_quality,
discriminator,
generator_output
):
y_d_rs, y_d_gs, _, _ = discriminator(high_quality, generator_output.detach())
d_loss, _, _ = discriminator_loss(y_d_rs, y_d_gs)
return d_loss
def generator_train(
low_quality,
high_quality,
generator,
discriminator,
generator_output
):
y_d_rs, y_d_gs, fmap_rs, fmap_gs = discriminator(high_quality, generator_output)
loss_gen_adv = generator_adv_loss(y_d_gs)
loss_fm = feature_matching_loss(fmap_rs, fmap_gs)
stft_loss = stft_loss_fn(high_quality, generator_output)["total"]
lambda_stft = 45.0
lambda_fm = 2.0
lambda_adv = 1.0
combined_loss = (lambda_stft * stft_loss) + \
(lambda_fm * loss_fm) + \
(lambda_adv * loss_gen_adv)
return combined_loss, loss_gen_adv

0
utils/__init__.py Normal file
View File