💩 | Hopefully this does something else.
This commit is contained in:
17
training.py
17
training.py
@ -45,20 +45,21 @@ scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min',
|
|||||||
|
|
||||||
# Training loop
|
# Training loop
|
||||||
num_epochs = 500
|
num_epochs = 500
|
||||||
|
lambda_gp = 10
|
||||||
for epoch in range(num_epochs):
|
for epoch in range(num_epochs):
|
||||||
original, crap_audio = torch.empty((1,2,3)), torch.empty((1,2,3))
|
original = torch.empty((2))
|
||||||
|
crap_audio = torch.empty((2))
|
||||||
for low_quality, high_quality in tqdm.tqdm(train_data_loader):
|
for low_quality, high_quality in tqdm.tqdm(train_data_loader):
|
||||||
low_quality = low_quality.to(device)
|
|
||||||
high_quality = high_quality.to(device)
|
high_quality = high_quality.to(device)
|
||||||
batch_size = low_quality.size(0)
|
low_quality = low_quality.to(device)
|
||||||
|
|
||||||
|
batch_size = high_quality.size(0)
|
||||||
real_labels = torch.ones(batch_size, 1).to(device)
|
real_labels = torch.ones(batch_size, 1).to(device)
|
||||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||||
|
|
||||||
# Train Discriminator
|
|
||||||
optimizer_d.zero_grad()
|
|
||||||
real_outputs = discriminator(high_quality)
|
real_outputs = discriminator(high_quality)
|
||||||
fake_audio = generator(low_quality)
|
fake_outputs = discriminator(generator(low_quality))
|
||||||
fake_outputs = discriminator(fake_audio.detach())
|
|
||||||
d_loss_real = criterion(real_outputs, real_labels)
|
d_loss_real = criterion(real_outputs, real_labels)
|
||||||
d_loss_fake = criterion(fake_outputs, fake_labels)
|
d_loss_fake = criterion(fake_outputs, fake_labels)
|
||||||
d_loss = (d_loss_real + d_loss_fake) * 0.5
|
d_loss = (d_loss_real + d_loss_fake) * 0.5
|
||||||
@ -67,10 +68,12 @@ for epoch in range(num_epochs):
|
|||||||
|
|
||||||
# Train Generator
|
# Train Generator
|
||||||
optimizer_g.zero_grad()
|
optimizer_g.zero_grad()
|
||||||
|
fake_audio = generator(low_quality)
|
||||||
fake_outputs = discriminator(fake_audio)
|
fake_outputs = discriminator(fake_audio)
|
||||||
g_loss = criterion(fake_outputs, real_labels)
|
g_loss = criterion(fake_outputs, real_labels)
|
||||||
g_loss.backward()
|
g_loss.backward()
|
||||||
optimizer_g.step()
|
optimizer_g.step()
|
||||||
|
|
||||||
original = high_quality
|
original = high_quality
|
||||||
crap_audio = fake_audio
|
crap_audio = fake_audio
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user