⚗️ | Experimenting with training optimization.
This commit is contained in:
parent
1fa2a13091
commit
b7d7e95c89
1
.gitignore
vendored
1
.gitignore
vendored
@ -164,4 +164,5 @@ cython_debug/
|
|||||||
backup/
|
backup/
|
||||||
dataset/
|
dataset/
|
||||||
old-output/
|
old-output/
|
||||||
|
output/
|
||||||
*.wav
|
*.wav
|
||||||
|
@ -1,5 +1,4 @@
|
|||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch
|
|
||||||
|
|
||||||
class SISUDiscriminator(nn.Module):
|
class SISUDiscriminator(nn.Module):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
|
@ -5,13 +5,18 @@ class SISUGenerator(nn.Module):
|
|||||||
super(SISUGenerator, self).__init__()
|
super(SISUGenerator, self).__init__()
|
||||||
self.model = nn.Sequential(
|
self.model = nn.Sequential(
|
||||||
nn.Conv1d(2, 128, kernel_size=3, padding=1),
|
nn.Conv1d(2, 128, kernel_size=3, padding=1),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
nn.Conv1d(128, 256, kernel_size=3, padding=1),
|
nn.Conv1d(128, 256, kernel_size=3, padding=1),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
|
|
||||||
nn.Upsample(scale_factor=upscale_scale, mode='nearest'),
|
nn.Upsample(scale_factor=upscale_scale, mode='nearest'),
|
||||||
|
|
||||||
nn.Conv1d(256, 128, kernel_size=3, padding=1),
|
nn.Conv1d(256, 128, kernel_size=3, padding=1),
|
||||||
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
nn.Conv1d(128, 64, kernel_size=3, padding=1),
|
nn.Conv1d(128, 64, kernel_size=3, padding=1),
|
||||||
nn.Conv1d(64, 2, kernel_size=3, padding=1)
|
nn.LeakyReLU(0.2, inplace=True),
|
||||||
|
nn.Conv1d(64, 2, kernel_size=3, padding=1),
|
||||||
|
nn.Tanh()
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
|
128
training.py
128
training.py
@ -1,6 +1,8 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.optim as optim
|
import torch.optim as optim
|
||||||
|
|
||||||
|
import torch.nn.functional as F
|
||||||
import torchaudio
|
import torchaudio
|
||||||
import tqdm
|
import tqdm
|
||||||
|
|
||||||
@ -25,8 +27,8 @@ val_size = int(dataset_size-train_size)
|
|||||||
|
|
||||||
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
||||||
|
|
||||||
train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
|
train_data_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
|
||||||
val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
|
val_data_loader = DataLoader(val_dataset, batch_size=8, shuffle=True)
|
||||||
|
|
||||||
# Initialize models and move them to device
|
# Initialize models and move them to device
|
||||||
generator = SISUGenerator()
|
generator = SISUGenerator()
|
||||||
@ -43,65 +45,91 @@ criterion_d = nn.BCEWithLogitsLoss()
|
|||||||
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||||
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||||
|
|
||||||
# Training loop
|
# Scheduler
|
||||||
num_epochs = 500
|
scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
|
||||||
|
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||||
|
|
||||||
for epoch in range(num_epochs):
|
def snr(y_true, y_pred):
|
||||||
low_quality_audio = torch.empty((1))
|
noise = y_true - y_pred
|
||||||
high_quality_audio = torch.empty((1))
|
signal_power = torch.mean(y_true ** 2)
|
||||||
ai_enhanced_audio = torch.empty((1))
|
noise_power = torch.mean(noise ** 2)
|
||||||
total_d_loss = 0
|
snr_db = 10 * torch.log10(signal_power / noise_power)
|
||||||
total_g_loss = 0
|
return snr_db
|
||||||
|
|
||||||
# Training
|
def discriminator_train(discriminator, optimizer, criterion, generator, real_labels, fake_labels, high_quality, low_quality):
|
||||||
for low_quality, high_quality in tqdm.tqdm(train_data_loader, desc=f"Epoch {epoch+1}/{num_epochs}"):
|
optimizer.zero_grad()
|
||||||
high_quality = high_quality.to(device)
|
|
||||||
low_quality = low_quality.to(device)
|
|
||||||
|
|
||||||
batch_size = 1
|
discriminator_decision_from_real = discriminator(high_quality)
|
||||||
real_labels = torch.ones(batch_size, 1).to(device)
|
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
||||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
|
||||||
|
|
||||||
###### Train Discriminator ######
|
generator_output = generator(low_quality)
|
||||||
discriminator.train()
|
discriminator_decision_from_fake = discriminator(generator_output.detach())
|
||||||
optimizer_d.zero_grad()
|
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels)
|
||||||
|
|
||||||
# 1. Real data
|
d_loss = (d_loss_real + d_loss_fake) / 2.0
|
||||||
real_outputs = discriminator(high_quality)
|
|
||||||
d_loss_real = criterion_d(real_outputs, real_labels)
|
|
||||||
|
|
||||||
# 2. Fake data
|
d_loss.backward()
|
||||||
fake_audio = generator(low_quality)
|
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) #Gradient Clipping
|
||||||
fake_outputs = discriminator(fake_audio.detach())
|
optimizer.step()
|
||||||
d_loss_fake = criterion_d(fake_outputs, fake_labels)
|
# print(f"Discriminator Loss: {d_loss.item():.4f}, Mean Real Logit: {discriminator_decision_from_real.mean().item():.2f}, Mean Fake Logit: {discriminator_decision_from_fake.mean().item():.2f}")
|
||||||
|
|
||||||
d_loss = (d_loss_real + d_loss_fake) / 2.0 # Without gradient penalty
|
def start_training():
|
||||||
d_loss.backward()
|
|
||||||
optimizer_d.step()
|
|
||||||
total_d_loss += d_loss.item()
|
|
||||||
|
|
||||||
generator.train()
|
# Training loop
|
||||||
optimizer_g.zero_grad()
|
# discriminator_epochs = 1000
|
||||||
|
generator_epochs = 500
|
||||||
|
for generator_epoch in range(generator_epochs):
|
||||||
|
low_quality_audio = torch.empty((1))
|
||||||
|
high_quality_audio = torch.empty((1))
|
||||||
|
ai_enhanced_audio = torch.empty((1))
|
||||||
|
|
||||||
# Generator loss: how well fake data fools the discriminator
|
# Training
|
||||||
fake_outputs = discriminator(fake_audio) # No detach here
|
for low_quality, high_quality in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
|
||||||
g_loss = criterion_g(fake_outputs, real_labels) # Train generator to produce real-like outputs
|
high_quality = high_quality.to(device)
|
||||||
|
low_quality = low_quality.to(device)
|
||||||
|
|
||||||
g_loss.backward()
|
batch_size = high_quality.size(0)
|
||||||
optimizer_g.step()
|
real_labels = torch.ones(batch_size, 1).to(device)
|
||||||
total_g_loss += g_loss.item()
|
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||||
|
|
||||||
low_quality_audio = low_quality
|
# Train Discriminator
|
||||||
high_quality_audio = high_quality
|
discriminator.train()
|
||||||
ai_enhanced_audio = fake_audio
|
|
||||||
|
|
||||||
if epoch % 10 == 0:
|
for _ in range(3):
|
||||||
print(f"Saved epoch {epoch}!")
|
discriminator_train(discriminator, optimizer_d, criterion_d, generator, real_labels, fake_labels, high_quality, low_quality)
|
||||||
torchaudio.save(f"./output/epoch-{epoch}-audio-crap.wav", low_quality_audio[0].cpu(), 44100)
|
|
||||||
torchaudio.save(f"./output/epoch-{epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), 44100)
|
|
||||||
torchaudio.save(f"./output/epoch-{epoch}-audio-orig.wav", high_quality_audio[0].cpu(), 44100)
|
|
||||||
|
|
||||||
torch.save(generator.state_dict(), "generator.pt")
|
# Train Generator
|
||||||
torch.save(discriminator.state_dict(), "discriminator.pt")
|
generator.train()
|
||||||
|
optimizer_g.zero_grad()
|
||||||
|
|
||||||
print("Training complete!")
|
# Generator loss: how well fake data fools the discriminator
|
||||||
|
generator_output = generator(low_quality)
|
||||||
|
discriminator_decision = discriminator(generator_output) # No detach here
|
||||||
|
g_loss = criterion_g(discriminator_decision, real_labels) # Train generator to produce real-like outputs
|
||||||
|
|
||||||
|
g_loss.backward()
|
||||||
|
optimizer_g.step()
|
||||||
|
|
||||||
|
low_quality_audio = low_quality
|
||||||
|
high_quality_audio = high_quality
|
||||||
|
ai_enhanced_audio = generator_output
|
||||||
|
|
||||||
|
metric = snr(high_quality_audio, ai_enhanced_audio)
|
||||||
|
print(f"Generator metric {metric}!")
|
||||||
|
scheduler_g.step(metric)
|
||||||
|
|
||||||
|
if generator_epoch % 10 == 0:
|
||||||
|
print(f"Saved epoch {generator_epoch}!")
|
||||||
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0].cpu(), 44100)
|
||||||
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), 44100)
|
||||||
|
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0].cpu(), 44100)
|
||||||
|
|
||||||
|
if generator_epoch % 50 == 0:
|
||||||
|
torch.save(discriminator.state_dict(), "discriminator.pt")
|
||||||
|
torch.save(generator.state_dict(), "generator.pt")
|
||||||
|
|
||||||
|
torch.save(discriminator.state_dict(), "discriminator.pt")
|
||||||
|
torch.save(generator.state_dict(), "generator.pt")
|
||||||
|
print("Training complete!")
|
||||||
|
|
||||||
|
start_training()
|
||||||
|
Loading…
Reference in New Issue
Block a user