⚗️ | Experimenting with training optimization.

This commit is contained in:
NikkeDoy 2024-12-21 00:24:00 +02:00
parent 1fa2a13091
commit b7d7e95c89
4 changed files with 85 additions and 52 deletions

1
.gitignore vendored
View File

@ -164,4 +164,5 @@ cython_debug/
backup/ backup/
dataset/ dataset/
old-output/ old-output/
output/
*.wav *.wav

View File

@ -1,5 +1,4 @@
import torch.nn as nn import torch.nn as nn
import torch
class SISUDiscriminator(nn.Module): class SISUDiscriminator(nn.Module):
def __init__(self): def __init__(self):

View File

@ -5,13 +5,18 @@ class SISUGenerator(nn.Module):
super(SISUGenerator, self).__init__() super(SISUGenerator, self).__init__()
self.model = nn.Sequential( self.model = nn.Sequential(
nn.Conv1d(2, 128, kernel_size=3, padding=1), nn.Conv1d(2, 128, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(128, 256, kernel_size=3, padding=1), nn.Conv1d(128, 256, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Upsample(scale_factor=upscale_scale, mode='nearest'), nn.Upsample(scale_factor=upscale_scale, mode='nearest'),
nn.Conv1d(256, 128, kernel_size=3, padding=1), nn.Conv1d(256, 128, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(128, 64, kernel_size=3, padding=1), nn.Conv1d(128, 64, kernel_size=3, padding=1),
nn.Conv1d(64, 2, kernel_size=3, padding=1) nn.LeakyReLU(0.2, inplace=True),
nn.Conv1d(64, 2, kernel_size=3, padding=1),
nn.Tanh()
) )
def forward(self, x): def forward(self, x):

View File

@ -1,6 +1,8 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.optim as optim import torch.optim as optim
import torch.nn.functional as F
import torchaudio import torchaudio
import tqdm import tqdm
@ -25,8 +27,8 @@ val_size = int(dataset_size-train_size)
train_dataset, val_dataset = random_split(dataset, [train_size, val_size]) train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True) train_data_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True) val_data_loader = DataLoader(val_dataset, batch_size=8, shuffle=True)
# Initialize models and move them to device # Initialize models and move them to device
generator = SISUGenerator() generator = SISUGenerator()
@ -43,65 +45,91 @@ criterion_d = nn.BCEWithLogitsLoss()
optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999)) optimizer_g = optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999)) optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
# Training loop # Scheduler
num_epochs = 500 scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5)
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
for epoch in range(num_epochs): def snr(y_true, y_pred):
noise = y_true - y_pred
signal_power = torch.mean(y_true ** 2)
noise_power = torch.mean(noise ** 2)
snr_db = 10 * torch.log10(signal_power / noise_power)
return snr_db
def discriminator_train(discriminator, optimizer, criterion, generator, real_labels, fake_labels, high_quality, low_quality):
optimizer.zero_grad()
discriminator_decision_from_real = discriminator(high_quality)
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
generator_output = generator(low_quality)
discriminator_decision_from_fake = discriminator(generator_output.detach())
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels)
d_loss = (d_loss_real + d_loss_fake) / 2.0
d_loss.backward()
nn.utils.clip_grad_norm_(discriminator.parameters(), max_norm=1.0) #Gradient Clipping
optimizer.step()
# print(f"Discriminator Loss: {d_loss.item():.4f}, Mean Real Logit: {discriminator_decision_from_real.mean().item():.2f}, Mean Fake Logit: {discriminator_decision_from_fake.mean().item():.2f}")
def start_training():
# Training loop
# discriminator_epochs = 1000
generator_epochs = 500
for generator_epoch in range(generator_epochs):
low_quality_audio = torch.empty((1)) low_quality_audio = torch.empty((1))
high_quality_audio = torch.empty((1)) high_quality_audio = torch.empty((1))
ai_enhanced_audio = torch.empty((1)) ai_enhanced_audio = torch.empty((1))
total_d_loss = 0
total_g_loss = 0
# Training # Training
for low_quality, high_quality in tqdm.tqdm(train_data_loader, desc=f"Epoch {epoch+1}/{num_epochs}"): for low_quality, high_quality in tqdm.tqdm(train_data_loader, desc=f"Epoch {generator_epoch+1}/{generator_epochs}"):
high_quality = high_quality.to(device) high_quality = high_quality.to(device)
low_quality = low_quality.to(device) low_quality = low_quality.to(device)
batch_size = 1 batch_size = high_quality.size(0)
real_labels = torch.ones(batch_size, 1).to(device) real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device) fake_labels = torch.zeros(batch_size, 1).to(device)
###### Train Discriminator ###### # Train Discriminator
discriminator.train() discriminator.train()
optimizer_d.zero_grad()
# 1. Real data for _ in range(3):
real_outputs = discriminator(high_quality) discriminator_train(discriminator, optimizer_d, criterion_d, generator, real_labels, fake_labels, high_quality, low_quality)
d_loss_real = criterion_d(real_outputs, real_labels)
# 2. Fake data
fake_audio = generator(low_quality)
fake_outputs = discriminator(fake_audio.detach())
d_loss_fake = criterion_d(fake_outputs, fake_labels)
d_loss = (d_loss_real + d_loss_fake) / 2.0 # Without gradient penalty
d_loss.backward()
optimizer_d.step()
total_d_loss += d_loss.item()
# Train Generator
generator.train() generator.train()
optimizer_g.zero_grad() optimizer_g.zero_grad()
# Generator loss: how well fake data fools the discriminator # Generator loss: how well fake data fools the discriminator
fake_outputs = discriminator(fake_audio) # No detach here generator_output = generator(low_quality)
g_loss = criterion_g(fake_outputs, real_labels) # Train generator to produce real-like outputs discriminator_decision = discriminator(generator_output) # No detach here
g_loss = criterion_g(discriminator_decision, real_labels) # Train generator to produce real-like outputs
g_loss.backward() g_loss.backward()
optimizer_g.step() optimizer_g.step()
total_g_loss += g_loss.item()
low_quality_audio = low_quality low_quality_audio = low_quality
high_quality_audio = high_quality high_quality_audio = high_quality
ai_enhanced_audio = fake_audio ai_enhanced_audio = generator_output
if epoch % 10 == 0: metric = snr(high_quality_audio, ai_enhanced_audio)
print(f"Saved epoch {epoch}!") print(f"Generator metric {metric}!")
torchaudio.save(f"./output/epoch-{epoch}-audio-crap.wav", low_quality_audio[0].cpu(), 44100) scheduler_g.step(metric)
torchaudio.save(f"./output/epoch-{epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), 44100)
torchaudio.save(f"./output/epoch-{epoch}-audio-orig.wav", high_quality_audio[0].cpu(), 44100)
torch.save(generator.state_dict(), "generator.pt") if generator_epoch % 10 == 0:
torch.save(discriminator.state_dict(), "discriminator.pt") print(f"Saved epoch {generator_epoch}!")
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0].cpu(), 44100)
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu(), 44100)
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0].cpu(), 44100)
print("Training complete!") if generator_epoch % 50 == 0:
torch.save(discriminator.state_dict(), "discriminator.pt")
torch.save(generator.state_dict(), "generator.pt")
torch.save(discriminator.state_dict(), "discriminator.pt")
torch.save(generator.state_dict(), "generator.pt")
print("Training complete!")
start_training()