| Added support for .mp3 and .flac loading...

This commit is contained in:
2025-05-04 23:56:14 +03:00
parent 660b41aef8
commit b1e18443ba
3 changed files with 83 additions and 81 deletions

View File

@ -76,7 +76,7 @@ os.makedirs(audio_output_dir, exist_ok=True)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
train_data_loader = DataLoader(dataset, batch_size=256, shuffle=True)
# ========= MODELS =========
@ -122,70 +122,69 @@ def start_training():
times_correct = 0
# ========= TRAINING =========
for high_quality_data, low_quality_data in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
for training_data in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
## Data structure:
# [[float..., float..., float...], sample_rate]
# [[[float..., float..., float...], [float..., float..., float...]], [original_sample_rate, mangled_sample_rate]]
# ========= LABELS =========
good_quality_data = training_data[0][0].to(device)
bad_quality_data = training_data[0][1].to(device)
original_sample_rate = training_data[1][0]
mangled_sample_rate = training_data[1][1]
batch_size = high_quality_data[0][0].size(0)
batch_size = good_quality_data.size(0)
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
high_quality_audio = high_quality_data
low_quality_audio = low_quality_data
high_quality_audio = (good_quality_data, original_sample_rate)
low_quality_audio = (bad_quality_data, mangled_sample_rate)
ai_enhanced_outputs = []
# ========= DISCRIMINATOR =========
discriminator.train()
d_loss = discriminator_train(
good_quality_data,
bad_quality_data,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
for high_quality_sample, low_quality_sample in tqdm.tqdm(zip(high_quality_data[0], low_quality_data[0]), desc=f"Processing audio clip.. Length: {len(high_quality_data[0])}"):
# ========= DISCRIMINATOR =========
discriminator.train()
d_loss = discriminator_train(
high_quality_sample,
low_quality_sample,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
# ========= GENERATOR =========
generator.train()
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
bad_quality_data,
good_quality_data,
real_labels,
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
# ========= GENERATOR =========
generator.train()
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
low_quality_sample,
high_quality_sample,
real_labels,
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
ai_enhanced_outputs.append(generator_output)
if debug:
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
scheduler_d.step(d_loss.detach())
scheduler_g.step(adversarial_loss.detach())
if debug:
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
scheduler_d.step(d_loss.detach())
scheduler_g.step(adversarial_loss.detach())
# ========= SAVE LATEST AUDIO =========
high_quality_audio = (torch.cat(high_quality_data[0]), high_quality_data[1])
low_quality_audio = (torch.cat(low_quality_data[0]), low_quality_data[1])
ai_enhanced_audio = (torch.cat(ai_enhanced_outputs), high_quality_data[1])
high_quality_audio = (good_quality_data, original_sample_rate)
low_quality_audio = (bad_quality_data, original_sample_rate)
ai_enhanced_audio = (generator_output, original_sample_rate)
new_epoch = generator_epoch+epoch
if generator_epoch % 25 == 0:
print(f"Saved epoch {new_epoch}!")
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0].cpu().detach(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0].cpu().detach(), ai_enhanced_audio[1])
torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0].cpu().detach(), high_quality_audio[1])
# if generator_epoch % 25 == 0:
# print(f"Saved epoch {new_epoch}!")
# torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-orig.wav", high_quality_audio[0][-1].cpu().detach(), high_quality_audio[1][-1])
# torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-crap.wav", low_quality_audio[0][-1].cpu().detach(), high_quality_audio[1][-1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
# torchaudio.save(f"{audio_output_dir}/epoch-{new_epoch}-audio-ai.wav", ai_enhanced_audio[0][-1].cpu().detach(), high_quality_audio[1][-1])
#if debug:
# print(generator.state_dict().keys())