🎉 | Start of a project

This commit is contained in:
2024-12-17 22:39:03 +02:00
parent d5a215fc60
commit 9db1932820
8 changed files with 263 additions and 1 deletions

7
.gitignore vendored
View File

@ -158,4 +158,9 @@ cython_debug/
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear # and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder. # option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/ #.idea/
# Project based files
backup/
dataset/
old-output/

49
data.py Normal file
View File

@ -0,0 +1,49 @@
import torch
from torch.utils.data import Dataset
import torchaudio
import os
class AudioDataset(Dataset):
def __init__(self, input_dir, target_duration=None, padding_mode='constant', padding_value=0.0):
self.input_files = [os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')]
self.target_duration = target_duration # Duration in seconds or None if not set
self.padding_mode = padding_mode
self.padding_value = padding_value
def __len__(self):
return len(self.input_files)
def __getitem__(self, idx):
# Load audio samples using torchaudio
high_quality_wav, sr_original = torchaudio.load(self.input_files[idx], normalize=True)
# Resample to 16000 Hz if necessary
resample_transform = torchaudio.transforms.Resample(sr_original, 16000)
low_quality_wav = resample_transform(high_quality_wav)
# Calculate target length in samples if target_duration is specified
if self.target_duration is not None:
target_length = int(self.target_duration * 16000) # Assuming 16000 Hz as target sample rate
else:
target_length = high_quality_wav.size(1)
# Pad high_quality_wav and low_quality_wav to target_length
high_quality_wav = self.pad_tensor(high_quality_wav, target_length)
low_quality_wav = self.pad_tensor(low_quality_wav, target_length)
return high_quality_wav, low_quality_wav
def pad_tensor(self, tensor, target_length):
"""Pad tensor to target length along the time dimension (dim=1)."""
current_length = tensor.size(1)
if current_length < target_length:
# Calculate padding amount for each side
padding_amount = target_length - current_length
padding = (0, padding_amount) # (left_pad, right_pad) for 1D padding
tensor = torch.nn.functional.pad(tensor, padding, mode=self.padding_mode, value=self.padding_value)
else:
# If tensor is longer than target, truncate it
tensor = tensor[:, :target_length]
return tensor

23
discriminator.py Normal file
View File

@ -0,0 +1,23 @@
import torch.nn as nn
class SISUDiscriminator(nn.Module):
def __init__(self):
super(SISUDiscriminator, self).__init__()
self.model = nn.Sequential(
nn.Conv1d(2, 64, kernel_size=4, stride=2, padding=1), # Now accepts 2 input channels
nn.LeakyReLU(0.2),
nn.Conv1d(64, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm1d(128),
nn.LeakyReLU(0.2),
nn.Conv1d(128, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm1d(256),
nn.LeakyReLU(0.2),
nn.Conv1d(256, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
nn.Conv1d(512, 1, kernel_size=4, stride=1, padding=0),
nn.Sigmoid()
)
def forward(self, x):
return self.model(x)

24
generator.py Normal file
View File

@ -0,0 +1,24 @@
import torch.nn as nn
class SISUGenerator(nn.Module):
def __init__(self): # No noise_dim parameter
super(SISUGenerator, self).__init__()
self.model = nn.Sequential(
nn.Conv1d(2, 64, kernel_size=7, stride=1, padding=3), # Input 2 channels (low-quality audio)
nn.LeakyReLU(0.2),
nn.Conv1d(64, 64, kernel_size=7, stride=1, padding=3),
nn.LeakyReLU(0.2),
nn.Conv1d(64, 128, kernel_size=5, stride=2, padding=2),
nn.LeakyReLU(0.2),
nn.Conv1d(128, 128, kernel_size=5, stride=1, padding=2),
nn.LeakyReLU(0.2),
nn.ConvTranspose1d(128, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2),
nn.Conv1d(64, 64, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(0.2),
nn.Conv1d(64, 2, kernel_size=3, stride=1, padding=1), # Output 2 channels (high-quality audio)
nn.Tanh()
)
def forward(self, x):
return self.model(x)

BIN
output.wav Normal file

Binary file not shown.

12
requirements.txt Normal file
View File

@ -0,0 +1,12 @@
filelock>=3.16.1
fsspec>=2024.10.0
Jinja2>=3.1.4
MarkupSafe>=2.1.5
mpmath>=1.3.0
networkx>=3.4.2
numpy>=2.1.2
pillow>=11.0.0
setuptools>=70.2.0
sympy>=1.13.1
tqdm>=4.67.1
typing_extensions>=4.12.2

112
training.py Normal file
View File

@ -0,0 +1,112 @@
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import tqdm
from torch.utils.data import random_split
from torch.utils.data import DataLoader
from data import AudioDataset
from generator import SISUGenerator
from discriminator import SISUDiscriminator
# Check for CUDA availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, target_duration=2.0) # 5 seconds target duration
dataset_size = len(dataset)
train_size = int(dataset_size * .9)
val_size = int(dataset_size-train_size)
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
train_data_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
val_data_loader = DataLoader(val_dataset, batch_size=4, shuffle=True)
# Initialize models and move them to device
generator = SISUGenerator()
discriminator = SISUDiscriminator()
generator = generator.to(device)
discriminator = discriminator.to(device)
# Loss and optimizers
criterion = nn.MSELoss() # Use Mean Squared Error loss
optimizer_g = optim.Adam(generator.parameters(), lr=0.0005, betas=(0.5, 0.999))
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
# Learning rate scheduler
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.1, patience=5)
# Training loop
num_epochs = 500
for epoch in range(num_epochs):
latest_crap_audio = torch.empty((2,3), dtype=torch.int64)
for high_quality, low_quality in tqdm.tqdm(train_data_loader):
# Check for NaN values in input tensors
if torch.isnan(low_quality).any() or torch.isnan(high_quality).any():
continue
high_quality = high_quality.to(device)
low_quality = low_quality.to(device)
batch_size = low_quality.size(0)
# Labels
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
# Train Discriminator
optimizer_d.zero_grad()
outputs = discriminator(high_quality)
d_loss_real = criterion(outputs, real_labels)
d_loss_real.backward()
resampled_audio = generator(low_quality)
outputs = discriminator(resampled_audio.detach())
d_loss_fake = criterion(outputs, fake_labels)
d_loss_fake.backward()
# Gradient clipping for discriminator
clip_value = 2.0
for param in discriminator.parameters():
if param.grad is not None:
param.grad.clamp_(-clip_value, clip_value)
optimizer_d.step()
d_loss = d_loss_real + d_loss_fake
# Train Generator
optimizer_g.zero_grad()
outputs = discriminator(resampled_audio)
g_loss = criterion(outputs, real_labels)
g_loss.backward()
# Gradient clipping for generator
clip_value = 1.0
for param in generator.parameters():
if param.grad is not None:
param.grad.clamp_(-clip_value, clip_value)
optimizer_g.step()
scheduler.step(d_loss + g_loss)
latest_crap_audio = resampled_audio
if epoch % 10 == 0:
print(latest_crap_audio.size())
torchaudio.save(f"./epoch-{epoch}-audio.wav", latest_crap_audio[0].cpu(), 44100)
print(f'Epoch [{epoch+1}/{num_epochs}]')
torch.save(generator.state_dict(), "generator.pt")
torch.save(discriminator.state_dict(), "discriminator.pt")
print("Training complete!")

37
use.py Normal file
View File

@ -0,0 +1,37 @@
import torch
import torchaudio
from generator import SISUGenerator
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize models and move them to device
generator = SISUGenerator()
generator.load_state_dict(torch.load("generator.pt", weights_only=True))
generator.to(device)
generator.eval()
def generate_audio(input_audio_path, output_audio_path):
# Load and preprocess input audio
low_quality_wav, sr_b = torchaudio.load(input_audio_path)
low_quality_wav = low_quality_wav.to(device)
# Normalize audio
low_quality_wav = normalize(low_quality_wav)
# Flatten the input if necessary
low_quality_wav = low_quality_wav.view(low_quality_wav.size(0), -1)
fake_audio = generator(low_quality_wav)
print(fake_audio)
print(f"Generated audio saved to {output_audio_path}")
return low_quality_wav
def normalize(wav):
return wav / torch.max(torch.abs(wav))
# Example usage
input_audio_path = "/mnt/games/Home/Downloads/SISU/sample_3_023.wav"
output_audio_path = "/mnt/games/Home/Downloads/SISU/godtier_audio.wav"
generate_audio(input_audio_path, output_audio_path)