🎉 | Start of a project
This commit is contained in:
112
training.py
Normal file
112
training.py
Normal file
@ -0,0 +1,112 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torchaudio
|
||||
import tqdm
|
||||
|
||||
from torch.utils.data import random_split
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from data import AudioDataset
|
||||
from generator import SISUGenerator
|
||||
from discriminator import SISUDiscriminator
|
||||
|
||||
# Check for CUDA availability
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print(f"Using device: {device}")
|
||||
|
||||
# Initialize dataset and dataloader
|
||||
dataset_dir = './dataset/good'
|
||||
dataset = AudioDataset(dataset_dir, target_duration=2.0) # 5 seconds target duration
|
||||
|
||||
dataset_size = len(dataset)
|
||||
train_size = int(dataset_size * .9)
|
||||
val_size = int(dataset_size-train_size)
|
||||
|
||||
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
||||
|
||||
train_data_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
|
||||
val_data_loader = DataLoader(val_dataset, batch_size=4, shuffle=True)
|
||||
|
||||
# Initialize models and move them to device
|
||||
generator = SISUGenerator()
|
||||
discriminator = SISUDiscriminator()
|
||||
|
||||
generator = generator.to(device)
|
||||
discriminator = discriminator.to(device)
|
||||
|
||||
# Loss and optimizers
|
||||
criterion = nn.MSELoss() # Use Mean Squared Error loss
|
||||
optimizer_g = optim.Adam(generator.parameters(), lr=0.0005, betas=(0.5, 0.999))
|
||||
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
|
||||
|
||||
# Learning rate scheduler
|
||||
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.1, patience=5)
|
||||
|
||||
# Training loop
|
||||
num_epochs = 500
|
||||
for epoch in range(num_epochs):
|
||||
latest_crap_audio = torch.empty((2,3), dtype=torch.int64)
|
||||
for high_quality, low_quality in tqdm.tqdm(train_data_loader):
|
||||
# Check for NaN values in input tensors
|
||||
if torch.isnan(low_quality).any() or torch.isnan(high_quality).any():
|
||||
continue
|
||||
|
||||
high_quality = high_quality.to(device)
|
||||
low_quality = low_quality.to(device)
|
||||
|
||||
batch_size = low_quality.size(0)
|
||||
|
||||
# Labels
|
||||
real_labels = torch.ones(batch_size, 1).to(device)
|
||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
|
||||
# Train Discriminator
|
||||
optimizer_d.zero_grad()
|
||||
outputs = discriminator(high_quality)
|
||||
d_loss_real = criterion(outputs, real_labels)
|
||||
d_loss_real.backward()
|
||||
|
||||
resampled_audio = generator(low_quality)
|
||||
|
||||
outputs = discriminator(resampled_audio.detach())
|
||||
d_loss_fake = criterion(outputs, fake_labels)
|
||||
d_loss_fake.backward()
|
||||
|
||||
|
||||
# Gradient clipping for discriminator
|
||||
clip_value = 2.0
|
||||
for param in discriminator.parameters():
|
||||
if param.grad is not None:
|
||||
param.grad.clamp_(-clip_value, clip_value)
|
||||
|
||||
optimizer_d.step()
|
||||
|
||||
d_loss = d_loss_real + d_loss_fake
|
||||
|
||||
# Train Generator
|
||||
optimizer_g.zero_grad()
|
||||
outputs = discriminator(resampled_audio)
|
||||
g_loss = criterion(outputs, real_labels)
|
||||
g_loss.backward()
|
||||
|
||||
# Gradient clipping for generator
|
||||
clip_value = 1.0
|
||||
for param in generator.parameters():
|
||||
if param.grad is not None:
|
||||
param.grad.clamp_(-clip_value, clip_value)
|
||||
|
||||
optimizer_g.step()
|
||||
|
||||
scheduler.step(d_loss + g_loss)
|
||||
latest_crap_audio = resampled_audio
|
||||
|
||||
if epoch % 10 == 0:
|
||||
print(latest_crap_audio.size())
|
||||
torchaudio.save(f"./epoch-{epoch}-audio.wav", latest_crap_audio[0].cpu(), 44100)
|
||||
print(f'Epoch [{epoch+1}/{num_epochs}]')
|
||||
|
||||
torch.save(generator.state_dict(), "generator.pt")
|
||||
torch.save(discriminator.state_dict(), "discriminator.pt")
|
||||
|
||||
print("Training complete!")
|
Reference in New Issue
Block a user