⚗️ | Experimenting, again.

This commit is contained in:
2024-12-26 04:00:24 +02:00
parent 2ff45de22d
commit 89f8c68986
4 changed files with 49 additions and 55 deletions

View File

@@ -1,32 +1,31 @@
import torch.nn as nn
class SISUGenerator(nn.Module):
def __init__(self, upscale_scale=4): # No noise_dim parameter
def __init__(self):
super(SISUGenerator, self).__init__()
layer = 32
# Convolution layers
layer = 16
# Convolution layers with BatchNorm and Residuals
self.conv1 = nn.Sequential(
nn.Conv1d(1, layer * 2, kernel_size=7, padding=1),
nn.Conv1d(1, layer * 2, kernel_size=7, padding=3),
nn.BatchNorm1d(layer * 2),
nn.PReLU(),
nn.Conv1d(layer * 2, layer * 5, kernel_size=5, padding=1),
nn.Conv1d(layer * 2, layer * 5, kernel_size=7, padding=3),
nn.BatchNorm1d(layer * 5),
nn.PReLU(),
nn.Conv1d(layer * 5, layer * 5, kernel_size=3, padding=1),
nn.PReLU()
nn.Conv1d(layer * 5, layer * 5, kernel_size=7, padding=3),
nn.BatchNorm1d(layer * 5),
nn.PReLU(),
)
self.final_layer = nn.Sequential(
nn.Conv1d(layer * 5, layer * 2, kernel_size=5, padding=2),
nn.BatchNorm1d(layer * 2),
nn.PReLU(),
nn.Conv1d(layer * 2, 1, kernel_size=3, padding=1),
# nn.Tanh() # Normalize audio... if needed...
)
# Transposed convolution for upsampling
self.upsample = nn.ConvTranspose1d(layer * 5, layer * 5, kernel_size=upscale_scale, stride=upscale_scale)
self.conv2 = nn.Sequential(
nn.Conv1d(layer * 5, layer * 5, kernel_size=3, padding=1),
nn.PReLU(),
nn.Conv1d(layer * 5, layer * 2, kernel_size=5, padding=1),
nn.PReLU(),
nn.Conv1d(layer * 2, 1, kernel_size=7, padding=1)
)
def forward(self, x, upscale_scale=4):
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.upsample(x)
x = self.conv2(x)
return x
x = self.final_layer(x)
return x + residual