⚗️ | Experimenting, again.
This commit is contained in:
@ -1,30 +1,31 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.utils as utils
|
||||
|
||||
class SISUDiscriminator(nn.Module):
|
||||
def __init__(self):
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
layers = 32
|
||||
layers = 8
|
||||
self.model = nn.Sequential(
|
||||
nn.Conv1d(1, layers, kernel_size=5, stride=2, padding=2),
|
||||
utils.spectral_norm(nn.Conv1d(1, layers, kernel_size=7, stride=2, padding=3)),
|
||||
nn.BatchNorm1d(layers),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(layers, layers * 2, kernel_size=5, stride=2, padding=2),
|
||||
nn.PReLU(),
|
||||
nn.Conv1d(layers, layers * 2, kernel_size=7, padding=3),
|
||||
nn.BatchNorm1d(layers * 2),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(layers * 2, layers * 4, kernel_size=5, stride=2, padding=2),
|
||||
nn.PReLU(),
|
||||
nn.Conv1d(layers * 2, layers * 4, kernel_size=5, padding=2),
|
||||
nn.BatchNorm1d(layers * 4),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.Conv1d(layers * 4, layers * 8, kernel_size=5, stride=2, padding=2),
|
||||
nn.PReLU(),
|
||||
nn.Conv1d(layers * 4, layers * 8, kernel_size=3, padding=1),
|
||||
nn.BatchNorm1d(layers * 8),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.PReLU(),
|
||||
nn.Conv1d(layers * 8, 1, kernel_size=3, padding=1),
|
||||
)
|
||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = x + 0.01 * torch.randn_like(x)
|
||||
x = self.model(x)
|
||||
x = self.global_avg_pool(x)
|
||||
x = x.view(-1, 1)
|
||||
x = self.sigmoid(x)
|
||||
return x
|
||||
|
Reference in New Issue
Block a user