:albemic: | Experimenting with other model layouts.
This commit is contained in:
@ -2,35 +2,54 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.utils as utils
|
||||
|
||||
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1):
|
||||
def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dilation=1, spectral_norm=True):
|
||||
padding = (kernel_size // 2) * dilation
|
||||
conv_layer = nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)
|
||||
if spectral_norm:
|
||||
conv_layer = utils.spectral_norm(conv_layer)
|
||||
return nn.Sequential(
|
||||
utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)),
|
||||
conv_layer,
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.BatchNorm1d(out_channels)
|
||||
)
|
||||
|
||||
class SISUDiscriminator(nn.Module):
|
||||
def __init__(self):
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
layers = 4 # Increased base layer count
|
||||
self.model = nn.Sequential(
|
||||
discriminator_block(1, layers, kernel_size=7, stride=2), # Initial downsampling
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2), # Downsampling
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2), # Increased dilation
|
||||
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=4), # Increased dilation
|
||||
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=8), # Deeper layer!
|
||||
discriminator_block(layers * 8, layers * 8, kernel_size=5, dilation=1), # Deeper layer!
|
||||
discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=2), # Reduced dilation
|
||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=1),
|
||||
discriminator_block(layers * 2, layers, kernel_size=3, stride=1), # Final convolution
|
||||
discriminator_block(layers, 1, kernel_size=3, stride=1)
|
||||
class AttentionBlock(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super(AttentionBlock, self).__init__()
|
||||
self.attention = nn.Sequential(
|
||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||
|
||||
def forward(self, x):
|
||||
# Gaussian noise is not necessary here for discriminator as it is already implicit in the training process
|
||||
attention_weights = self.attention(x)
|
||||
return x * attention_weights
|
||||
|
||||
class SISUDiscriminator(nn.Module):
|
||||
def __init__(self, layers=4): #Increased base layer count
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
discriminator_block(1, layers, kernel_size=7, stride=4), #Aggressive downsampling
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2),
|
||||
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
|
||||
AttentionBlock(layers * 8), #Added attention
|
||||
discriminator_block(layers * 8, layers * 16, kernel_size=5, dilation=8),
|
||||
discriminator_block(layers * 16, layers * 16, kernel_size=3, dilation=1),
|
||||
discriminator_block(layers * 16, layers * 8, kernel_size=3, dilation=2),
|
||||
discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=1),
|
||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, stride=1),
|
||||
discriminator_block(layers * 2, layers, kernel_size=3, stride=1),
|
||||
discriminator_block(layers, 1, kernel_size=3, stride=1, spectral_norm=False) #last layer no spectral norm.
|
||||
)
|
||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.model(x)
|
||||
x = self.global_avg_pool(x)
|
||||
x = x.view(-1, 1)
|
||||
x = self.sigmoid(x)
|
||||
return x
|
||||
|
Reference in New Issue
Block a user