⚗️ | More architectural changes
This commit is contained in:
@@ -7,18 +7,13 @@ import torchaudio.transforms as T
|
||||
|
||||
|
||||
class MultiResolutionSTFTLoss(nn.Module):
|
||||
"""
|
||||
Multi-resolution STFT loss.
|
||||
Combines spectral convergence loss and log-magnitude loss
|
||||
across multiple STFT resolutions.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fft_sizes: List[int] = [1024, 2048, 512],
|
||||
hop_sizes: List[int] = [120, 240, 50],
|
||||
win_lengths: List[int] = [600, 1200, 240],
|
||||
fft_sizes: List[int] = [512, 1024, 2048, 4096, 8192],
|
||||
hop_sizes: List[int] = [64, 128, 256, 512, 1024],
|
||||
win_lengths: List[int] = [256, 512, 1024, 2048, 4096],
|
||||
eps: float = 1e-7,
|
||||
center: bool = True
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -26,15 +21,14 @@ class MultiResolutionSTFTLoss(nn.Module):
|
||||
self.n_resolutions = len(fft_sizes)
|
||||
|
||||
self.stft_transforms = nn.ModuleList()
|
||||
for n_fft, hop_len, win_len in zip(fft_sizes, hop_sizes, win_lengths):
|
||||
window = torch.hann_window(win_len)
|
||||
for i, (n_fft, hop_len, win_len) in enumerate(zip(fft_sizes, hop_sizes, win_lengths)):
|
||||
stft = T.Spectrogram(
|
||||
n_fft=n_fft,
|
||||
hop_length=hop_len,
|
||||
win_length=win_len,
|
||||
window_fn=lambda _: window,
|
||||
power=None, # Keep complex output
|
||||
center=True,
|
||||
window_fn=torch.hann_window,
|
||||
power=None,
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
)
|
||||
@@ -43,12 +37,6 @@ class MultiResolutionSTFTLoss(nn.Module):
|
||||
def forward(
|
||||
self, y_true: torch.Tensor, y_pred: torch.Tensor
|
||||
) -> Dict[str, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
y_true: (B, T) or (B, 1, T) waveform
|
||||
y_pred: (B, T) or (B, 1, T) waveform
|
||||
"""
|
||||
# Ensure correct shape (B, T)
|
||||
if y_true.dim() == 3 and y_true.size(1) == 1:
|
||||
y_true = y_true.squeeze(1)
|
||||
if y_pred.dim() == 3 and y_pred.size(1) == 1:
|
||||
@@ -58,28 +46,21 @@ class MultiResolutionSTFTLoss(nn.Module):
|
||||
mag_loss = 0.0
|
||||
|
||||
for stft in self.stft_transforms:
|
||||
stft = stft.to(y_pred.device)
|
||||
|
||||
# Complex STFTs: (B, F, T, 2)
|
||||
stft.window = stft.window.to(y_true.device)
|
||||
stft_true = stft(y_true)
|
||||
stft_pred = stft(y_pred)
|
||||
|
||||
# Magnitudes
|
||||
stft_mag_true = torch.abs(stft_true)
|
||||
stft_mag_pred = torch.abs(stft_pred)
|
||||
|
||||
# --- Spectral Convergence Loss ---
|
||||
norm_true = torch.linalg.norm(stft_mag_true, dim=(-2, -1))
|
||||
norm_diff = torch.linalg.norm(stft_mag_true - stft_mag_pred, dim=(-2, -1))
|
||||
sc_loss += torch.mean(norm_diff / (norm_true + self.eps))
|
||||
|
||||
# --- Log STFT Magnitude Loss ---
|
||||
mag_loss += F.l1_loss(
|
||||
torch.log(stft_mag_pred + self.eps),
|
||||
torch.log(stft_mag_true + self.eps),
|
||||
)
|
||||
log_mag_pred = torch.log(stft_mag_pred + self.eps)
|
||||
log_mag_true = torch.log(stft_mag_true + self.eps)
|
||||
mag_loss += F.l1_loss(log_mag_pred, log_mag_true)
|
||||
|
||||
# Average across resolutions
|
||||
sc_loss /= self.n_resolutions
|
||||
mag_loss /= self.n_resolutions
|
||||
total_loss = sc_loss + mag_loss
|
||||
|
||||
Reference in New Issue
Block a user