⚗️ | More architectural changes
This commit is contained in:
@@ -5,32 +5,25 @@ import torch.nn.utils as utils
|
||||
def discriminator_block(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=3,
|
||||
kernel_size=15,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
spectral_norm=True,
|
||||
use_instance_norm=True,
|
||||
dilation=1
|
||||
):
|
||||
padding = (kernel_size // 2) * dilation
|
||||
padding = dilation * (kernel_size - 1) // 2
|
||||
|
||||
conv_layer = nn.Conv1d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
padding=padding
|
||||
)
|
||||
|
||||
if spectral_norm:
|
||||
conv_layer = utils.spectral_norm(conv_layer)
|
||||
conv_layer = utils.spectral_norm(conv_layer)
|
||||
leaky_relu = nn.LeakyReLU(0.2)
|
||||
|
||||
layers = [conv_layer]
|
||||
layers.append(nn.LeakyReLU(0.2, inplace=True))
|
||||
|
||||
if use_instance_norm:
|
||||
layers.append(nn.InstanceNorm1d(out_channels))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
return nn.Sequential(conv_layer, leaky_relu)
|
||||
|
||||
|
||||
class AttentionBlock(nn.Module):
|
||||
@@ -38,38 +31,40 @@ class AttentionBlock(nn.Module):
|
||||
super(AttentionBlock, self).__init__()
|
||||
self.attention = nn.Sequential(
|
||||
nn.Conv1d(channels, channels // 4, kernel_size=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.ReLU(),
|
||||
nn.Conv1d(channels // 4, channels, kernel_size=1),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
attention_weights = self.attention(x)
|
||||
return x * attention_weights
|
||||
return x + (x * attention_weights)
|
||||
|
||||
|
||||
class SISUDiscriminator(nn.Module):
|
||||
def __init__(self, layers=32):
|
||||
def __init__(self, layers=8):
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
self.model = nn.Sequential(
|
||||
discriminator_block(1, layers, kernel_size=7, stride=1),
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2),
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2),
|
||||
self.discriminator_blocks = nn.Sequential(
|
||||
# 1 -> 32
|
||||
discriminator_block(2, layers),
|
||||
AttentionBlock(layers),
|
||||
# 32 -> 64
|
||||
discriminator_block(layers, layers * 2, dilation=2),
|
||||
# 64 -> 128
|
||||
discriminator_block(layers * 2, layers * 4, dilation=4),
|
||||
AttentionBlock(layers * 4),
|
||||
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=4),
|
||||
discriminator_block(layers * 8, layers * 2, kernel_size=5, stride=2),
|
||||
discriminator_block(
|
||||
layers * 2,
|
||||
1,
|
||||
spectral_norm=False,
|
||||
use_instance_norm=False,
|
||||
),
|
||||
# 128 -> 256
|
||||
discriminator_block(layers * 4, layers * 8, stride=4),
|
||||
# 256 -> 512
|
||||
# discriminator_block(layers * 8, layers * 16, stride=4)
|
||||
)
|
||||
|
||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||
self.final_conv = nn.Conv1d(layers * 8, 1, kernel_size=3, padding=1)
|
||||
|
||||
self.avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.model(x)
|
||||
x = self.global_avg_pool(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
return x
|
||||
x = self.discriminator_blocks(x)
|
||||
x = self.final_conv(x)
|
||||
x = self.avg_pool(x)
|
||||
return x.squeeze(2)
|
||||
|
||||
Reference in New Issue
Block a user