⚗️ | More architectural changes

This commit is contained in:
2025-11-18 21:34:59 +02:00
parent 3f23242d6f
commit 782a3bab28
8 changed files with 245 additions and 254 deletions

62
data.py
View File

@@ -1,6 +1,7 @@
import os
import random
import torch
import torchaudio
import torchcodec.decoders as decoders
import tqdm
@@ -10,9 +11,9 @@ import AudioUtils
class AudioDataset(Dataset):
audio_sample_rates = [11025]
audio_sample_rates = [8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100]
def __init__(self, input_dir, clip_length: int = 8000, normalize: bool = True):
def __init__(self, input_dir, clip_length: int = 512, normalize: bool = True):
self.clip_length = clip_length
self.normalize = normalize
@@ -30,45 +31,20 @@ class AudioDataset(Dataset):
decoder = decoders.AudioDecoder(audio_clip)
decoded_samples = decoder.get_all_samples()
audio = decoded_samples.data.float() # ensure float32
audio = decoded_samples.data.float()
original_sample_rate = decoded_samples.sample_rate
audio = AudioUtils.stereo_tensor_to_mono(audio)
if normalize:
audio = AudioUtils.normalize(audio)
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(
original_sample_rate, mangled_sample_rate
)
resample_transform_high = torchaudio.transforms.Resample(
mangled_sample_rate, original_sample_rate
)
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length, True)
low_audio = resample_transform_high(resample_transform_low(audio))
if not splitted_high_quality_audio:
continue
splitted_high_quality_audio = AudioUtils.split_audio(audio, clip_length)
splitted_low_quality_audio = AudioUtils.split_audio(low_audio, clip_length)
if not splitted_high_quality_audio or not splitted_low_quality_audio:
continue # skip empty or invalid clips
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(
splitted_high_quality_audio[-1], clip_length
)
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(
splitted_low_quality_audio[-1], clip_length
)
for high_quality_data, low_quality_data in zip(
splitted_high_quality_audio, splitted_low_quality_audio
):
data.append(
(
(high_quality_data, low_quality_data),
(original_sample_rate, mangled_sample_rate),
)
)
for splitted_audio_clip in splitted_high_quality_audio:
for audio_clip in torch.split(splitted_audio_clip, 1):
data.append((audio_clip, original_sample_rate))
self.audio_data = data
@@ -76,4 +52,20 @@ class AudioDataset(Dataset):
return len(self.audio_data)
def __getitem__(self, idx):
return self.audio_data[idx]
audio_clip = self.audio_data[idx]
mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(
audio_clip[1], mangled_sample_rate
)
resample_transform_high = torchaudio.transforms.Resample(
mangled_sample_rate, audio_clip[1]
)
low_audio_clip = resample_transform_high(resample_transform_low(audio_clip[0]))
if audio_clip[0].shape[1] < low_audio_clip.shape[1]:
low_audio_clip = low_audio_clip[:, :audio_clip[0].shape[1]]
elif audio_clip[0].shape[1] > low_audio_clip.shape[1]:
low_audio_clip = AudioUtils.pad_tensor(low_audio_clip, self.clip_length)
return ((audio_clip[0], low_audio_clip), (audio_clip[1], mangled_sample_rate))