⚗️ | Increase discriminator size and implement mfcc_loss for generator.
This commit is contained in:
		| @@ -6,8 +6,8 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila | |||||||
|     padding = (kernel_size // 2) * dilation |     padding = (kernel_size // 2) * dilation | ||||||
|     return nn.Sequential( |     return nn.Sequential( | ||||||
|         utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)), |         utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)), | ||||||
|         nn.BatchNorm1d(out_channels), |         nn.LeakyReLU(0.2, inplace=True), | ||||||
|         nn.LeakyReLU(0.2, inplace=True) # Changed activation to LeakyReLU |         nn.BatchNorm1d(out_channels) | ||||||
|     ) |     ) | ||||||
|  |  | ||||||
| class SISUDiscriminator(nn.Module): | class SISUDiscriminator(nn.Module): | ||||||
| @@ -15,17 +15,16 @@ class SISUDiscriminator(nn.Module): | |||||||
|         super(SISUDiscriminator, self).__init__() |         super(SISUDiscriminator, self).__init__() | ||||||
|         layers = 4 # Increased base layer count |         layers = 4 # Increased base layer count | ||||||
|         self.model = nn.Sequential( |         self.model = nn.Sequential( | ||||||
|             # Initial Convolution |             discriminator_block(1, layers, kernel_size=7, stride=2),  # Initial downsampling | ||||||
|             discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample |             discriminator_block(layers, layers * 2, kernel_size=5, stride=2),  # Downsampling | ||||||
|  |             discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2), # Increased dilation | ||||||
|             # Core Discriminator Blocks with varied kernels and dilations |             discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=4), # Increased dilation | ||||||
|             discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample |             discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=8), # Deeper layer! | ||||||
|             discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4), |             discriminator_block(layers * 8, layers * 8, kernel_size=5, dilation=1), # Deeper layer! | ||||||
|             discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=16), |             discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=2), # Reduced dilation | ||||||
|             discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=8), |             discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=1), | ||||||
|             discriminator_block(layers * 2, layers, kernel_size=3, dilation=1), |             discriminator_block(layers * 2, layers, kernel_size=3, stride=1),  # Final convolution | ||||||
|             # Final Convolution |             discriminator_block(layers, 1, kernel_size=3, stride=1) | ||||||
|             discriminator_block(layers, 1, kernel_size=3, stride=1), |  | ||||||
|         ) |         ) | ||||||
|         self.global_avg_pool = nn.AdaptiveAvgPool1d(1) |         self.global_avg_pool = nn.AdaptiveAvgPool1d(1) | ||||||
|  |  | ||||||
|   | |||||||
							
								
								
									
										96
									
								
								training.py
									
									
									
									
									
								
							
							
								
								
								
								
								
									
									
								
							
						
						
									
										96
									
								
								training.py
									
									
									
									
									
								
							| @@ -10,6 +10,8 @@ import argparse | |||||||
|  |  | ||||||
| import math | import math | ||||||
|  |  | ||||||
|  | import os | ||||||
|  |  | ||||||
| from torch.utils.data import random_split | from torch.utils.data import random_split | ||||||
| from torch.utils.data import DataLoader | from torch.utils.data import DataLoader | ||||||
|  |  | ||||||
| @@ -18,8 +20,26 @@ from data import AudioDataset | |||||||
| from generator import SISUGenerator | from generator import SISUGenerator | ||||||
| from discriminator import SISUDiscriminator | from discriminator import SISUDiscriminator | ||||||
|  |  | ||||||
| def perceptual_loss(y_true, y_pred): | import librosa | ||||||
|     return torch.mean((y_true - y_pred) ** 2) |  | ||||||
|  | def mfcc_loss(y_true, y_pred, sr): | ||||||
|  |     # 1. Ensure sr is a NumPy scalar (not a Tensor) | ||||||
|  |     if isinstance(sr, torch.Tensor):  # Check if it's a Tensor | ||||||
|  |         sr = sr.item()  # Extract the value as a Python number | ||||||
|  |  | ||||||
|  |     # 2. Convert y_true and y_pred to NumPy arrays | ||||||
|  |     y_true_np = y_true.cpu().detach().numpy()[0]  # .cpu() is crucial! | ||||||
|  |     y_pred_np = y_pred.cpu().detach().numpy()[0] | ||||||
|  |  | ||||||
|  |  | ||||||
|  |     mfccs_true = librosa.feature.mfcc(y=y_true_np, sr=sr, n_mfcc=20) | ||||||
|  |     mfccs_pred = librosa.feature.mfcc(y=y_pred_np, sr=sr, n_mfcc=20) | ||||||
|  |  | ||||||
|  |     # 3. Convert MFCCs back to PyTorch tensors and ensure correct device | ||||||
|  |     mfccs_true = torch.tensor(mfccs_true, device=y_true.device, dtype=torch.float32) | ||||||
|  |     mfccs_pred = torch.tensor(mfccs_pred, device=y_pred.device, dtype=torch.float32) | ||||||
|  |  | ||||||
|  |     return torch.mean((mfccs_true - mfccs_pred)**2) | ||||||
|  |  | ||||||
| def discriminator_train(high_quality, low_quality, real_labels, fake_labels): | def discriminator_train(high_quality, low_quality, real_labels, fake_labels): | ||||||
|     optimizer_d.zero_grad() |     optimizer_d.zero_grad() | ||||||
| @@ -43,17 +63,23 @@ def discriminator_train(high_quality, low_quality, real_labels, fake_labels): | |||||||
|  |  | ||||||
|     return d_loss |     return d_loss | ||||||
|  |  | ||||||
| def generator_train(low_quality, real_labels): | def generator_train(low_quality, high_quality, real_labels): | ||||||
|     optimizer_g.zero_grad() |     optimizer_g.zero_grad() | ||||||
|  |  | ||||||
|     # Forward pass for fake samples (from generator output) |     # Forward pass for fake samples (from generator output) | ||||||
|     generator_output = generator(low_quality[0]) |     generator_output = generator(low_quality[0]) | ||||||
|     discriminator_decision = discriminator(generator_output) |  | ||||||
|     g_loss = criterion_g(discriminator_decision, real_labels) |  | ||||||
|  |  | ||||||
|     g_loss.backward() |     mfcc_l = mfcc_loss(high_quality[0], generator_output, high_quality[1]) | ||||||
|  |  | ||||||
|  |     discriminator_decision = discriminator(generator_output) | ||||||
|  |     adversarial_loss = criterion_g(discriminator_decision, real_labels) | ||||||
|  |  | ||||||
|  |     combined_loss = adversarial_loss + 0.5 * mfcc_l | ||||||
|  |  | ||||||
|  |     combined_loss.backward() | ||||||
|     optimizer_g.step() |     optimizer_g.step() | ||||||
|     return generator_output |  | ||||||
|  |     return (generator_output, combined_loss, adversarial_loss, mfcc_l) | ||||||
|  |  | ||||||
| # Init script argument parser | # Init script argument parser | ||||||
| parser = argparse.ArgumentParser(description="Training script") | parser = argparse.ArgumentParser(description="Training script") | ||||||
| @@ -61,6 +87,7 @@ parser.add_argument("--generator", type=str, default=None, | |||||||
|                     help="Path to the generator model file") |                     help="Path to the generator model file") | ||||||
| parser.add_argument("--discriminator", type=str, default=None, | parser.add_argument("--discriminator", type=str, default=None, | ||||||
|                     help="Path to the discriminator model file") |                     help="Path to the discriminator model file") | ||||||
|  | parser.add_argument("--verbose", action="store_true",  help="Increase output verbosity") | ||||||
|  |  | ||||||
| args = parser.parse_args() | args = parser.parse_args() | ||||||
|  |  | ||||||
| @@ -68,6 +95,8 @@ args = parser.parse_args() | |||||||
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||||||
| print(f"Using device: {device}") | print(f"Using device: {device}") | ||||||
|  |  | ||||||
|  | debug = args.verbose | ||||||
|  |  | ||||||
| # Initialize dataset and dataloader | # Initialize dataset and dataloader | ||||||
| dataset_dir = './dataset/good' | dataset_dir = './dataset/good' | ||||||
| dataset = AudioDataset(dataset_dir) | dataset = AudioDataset(dataset_dir) | ||||||
| @@ -85,7 +114,7 @@ dataset = AudioDataset(dataset_dir) | |||||||
|  |  | ||||||
| # ========= SINGLE ========= | # ========= SINGLE ========= | ||||||
|  |  | ||||||
| train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True) | train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True) | ||||||
|  |  | ||||||
| # Initialize models and move them to device | # Initialize models and move them to device | ||||||
| generator = SISUGenerator() | generator = SISUGenerator() | ||||||
| @@ -111,32 +140,10 @@ optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0001, betas=(0.5, 0.99 | |||||||
| scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5) | scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min', factor=0.5, patience=5) | ||||||
| scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5) | scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5) | ||||||
|  |  | ||||||
|  | models_dir = "models" | ||||||
|  | os.makedirs(models_dir, exist_ok=True) | ||||||
|  |  | ||||||
| def start_training(): | def start_training(): | ||||||
|  |  | ||||||
|     # Training loop |  | ||||||
|  |  | ||||||
|     # ========= DISCRIMINATOR PRE-TRAINING ========= |  | ||||||
|     # discriminator_epochs = 1 |  | ||||||
|     # for discriminator_epoch in range(discriminator_epochs): |  | ||||||
|  |  | ||||||
|     #     # ========= TRAINING ========= |  | ||||||
|     #     for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"): |  | ||||||
|     #         high_quality_sample = high_quality_clip[0].to(device) |  | ||||||
|     #         low_quality_sample = low_quality_clip[0].to(device) |  | ||||||
|  |  | ||||||
|     #         scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2] |  | ||||||
|  |  | ||||||
|     #         # ========= LABELS ========= |  | ||||||
|     #         batch_size = high_quality_sample.size(0) |  | ||||||
|     #         real_labels = torch.ones(batch_size, 1).to(device) |  | ||||||
|     #         fake_labels = torch.zeros(batch_size, 1).to(device) |  | ||||||
|  |  | ||||||
|     #         # ========= DISCRIMINATOR ========= |  | ||||||
|     #         discriminator.train() |  | ||||||
|     #         discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels) |  | ||||||
|  |  | ||||||
|     #     torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt") |  | ||||||
|  |  | ||||||
|     generator_epochs = 5000 |     generator_epochs = 5000 | ||||||
|     for generator_epoch in range(generator_epochs): |     for generator_epoch in range(generator_epochs): | ||||||
|         low_quality_audio = (torch.empty((1)), 1) |         low_quality_audio = (torch.empty((1)), 1) | ||||||
| @@ -158,32 +165,35 @@ def start_training(): | |||||||
|  |  | ||||||
|             # ========= DISCRIMINATOR ========= |             # ========= DISCRIMINATOR ========= | ||||||
|             discriminator.train() |             discriminator.train() | ||||||
|             discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels) |             d_loss = discriminator_train(high_quality_sample, low_quality_sample, real_labels, fake_labels) | ||||||
|  |  | ||||||
|             # ========= GENERATOR ========= |             # ========= GENERATOR ========= | ||||||
|             generator.train() |             generator.train() | ||||||
|             generator_output = generator_train(low_quality_sample, real_labels) |             generator_output, combined_loss, adversarial_loss, mfcc_l = generator_train(low_quality_sample, high_quality_sample, real_labels) | ||||||
|  |  | ||||||
|  |             if debug: | ||||||
|  |                 print(d_loss, combined_loss, adversarial_loss, mfcc_l) | ||||||
|  |             scheduler_d.step(d_loss) | ||||||
|  |             scheduler_g.step(combined_loss) | ||||||
|  |  | ||||||
|             # ========= SAVE LATEST AUDIO ========= |             # ========= SAVE LATEST AUDIO ========= | ||||||
|             high_quality_audio = high_quality_clip |             high_quality_audio = high_quality_clip | ||||||
|             low_quality_audio = low_quality_clip |             low_quality_audio = low_quality_clip | ||||||
|             ai_enhanced_audio = (generator_output, high_quality_clip[1]) |             ai_enhanced_audio = (generator_output, high_quality_clip[1]) | ||||||
|  |  | ||||||
|         #metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0]) |  | ||||||
|         #print(f"Generator metric {metric}!") |  | ||||||
|         #scheduler_g.step(metric) |  | ||||||
|  |  | ||||||
|         if generator_epoch % 10 == 0: |         if generator_epoch % 10 == 0: | ||||||
|             print(f"Saved epoch {generator_epoch}!") |             print(f"Saved epoch {generator_epoch}!") | ||||||
|             torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again. |             torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again. | ||||||
|             torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1]) |             torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1]) | ||||||
|             torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1]) |             torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1]) | ||||||
|  |  | ||||||
|         torch.save(discriminator.state_dict(), f"models/current-epoch-discriminator.pt") |         torch.save(discriminator.state_dict(), f"{models_dir}/discriminator_epoch_{generator_epoch}.pt") | ||||||
|         torch.save(generator.state_dict(), f"models/current-epoch-generator.pt") |         torch.save(generator.state_dict(), f"{models_dir}/generator_epoch_{generator_epoch}.pt") | ||||||
|  |         torch.save(discriminator, f"{models_dir}/discriminator_epoch_{generator_epoch}_full.pt") | ||||||
|  |         torch.save(generator, f"{models_dir}/generator_epoch_{generator_epoch}_full.pt") | ||||||
|  |  | ||||||
|     torch.save(discriminator.state_dict(), "models/epoch-5000-discriminator.pt") |     torch.save(discriminator, "models/epoch-5000-discriminator.pt") | ||||||
|     torch.save(generator.state_dict(), "models/epoch-5000-generator.pt") |     torch.save(generator, "models/epoch-5000-generator.pt") | ||||||
|     print("Training complete!") |     print("Training complete!") | ||||||
|  |  | ||||||
| start_training() | start_training() | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user