⚗️ | Increase discriminator size and implement mfcc_loss for generator.
This commit is contained in:
@ -6,8 +6,8 @@ def discriminator_block(in_channels, out_channels, kernel_size=3, stride=1, dila
|
||||
padding = (kernel_size // 2) * dilation
|
||||
return nn.Sequential(
|
||||
utils.spectral_norm(nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding)),
|
||||
nn.BatchNorm1d(out_channels),
|
||||
nn.LeakyReLU(0.2, inplace=True) # Changed activation to LeakyReLU
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
nn.BatchNorm1d(out_channels)
|
||||
)
|
||||
|
||||
class SISUDiscriminator(nn.Module):
|
||||
@ -15,17 +15,16 @@ class SISUDiscriminator(nn.Module):
|
||||
super(SISUDiscriminator, self).__init__()
|
||||
layers = 4 # Increased base layer count
|
||||
self.model = nn.Sequential(
|
||||
# Initial Convolution
|
||||
discriminator_block(1, layers, kernel_size=7, stride=2, dilation=1), # Downsample
|
||||
|
||||
# Core Discriminator Blocks with varied kernels and dilations
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2, dilation=1), # Downsample
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=4),
|
||||
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=16),
|
||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=8),
|
||||
discriminator_block(layers * 2, layers, kernel_size=3, dilation=1),
|
||||
# Final Convolution
|
||||
discriminator_block(layers, 1, kernel_size=3, stride=1),
|
||||
discriminator_block(1, layers, kernel_size=7, stride=2), # Initial downsampling
|
||||
discriminator_block(layers, layers * 2, kernel_size=5, stride=2), # Downsampling
|
||||
discriminator_block(layers * 2, layers * 4, kernel_size=5, dilation=2), # Increased dilation
|
||||
discriminator_block(layers * 4, layers * 4, kernel_size=5, dilation=4), # Increased dilation
|
||||
discriminator_block(layers * 4, layers * 8, kernel_size=5, dilation=8), # Deeper layer!
|
||||
discriminator_block(layers * 8, layers * 8, kernel_size=5, dilation=1), # Deeper layer!
|
||||
discriminator_block(layers * 8, layers * 4, kernel_size=3, dilation=2), # Reduced dilation
|
||||
discriminator_block(layers * 4, layers * 2, kernel_size=3, dilation=1),
|
||||
discriminator_block(layers * 2, layers, kernel_size=3, stride=1), # Final convolution
|
||||
discriminator_block(layers, 1, kernel_size=3, stride=1)
|
||||
)
|
||||
self.global_avg_pool = nn.AdaptiveAvgPool1d(1)
|
||||
|
||||
|
Reference in New Issue
Block a user