:albemic: | Real-time testing...

This commit is contained in:
NikkeDoy 2025-05-04 22:48:57 +03:00
parent d70c86c257
commit 660b41aef8
4 changed files with 107 additions and 75 deletions

View File

@ -16,3 +16,37 @@ def stretch_tensor(tensor, target_length):
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False) tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
return tensor return tensor
def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 128):
current_length = audio_tensor.shape[-1]
if current_length < target_length:
padding_needed = target_length - current_length
padding_tuple = (0, padding_needed)
padded_audio_tensor = F.pad(audio_tensor, padding_tuple, mode='constant', value=0)
else:
padded_audio_tensor = audio_tensor
return padded_audio_tensor
def split_audio(audio_tensor: torch.Tensor, chunk_size: int = 128) -> list[torch.Tensor]:
if not isinstance(chunk_size, int) or chunk_size <= 0:
raise ValueError("chunk_size must be a positive integer.")
# Handle scalar tensor edge case if necessary
if audio_tensor.dim() == 0:
return [audio_tensor] if audio_tensor.numel() > 0 else []
# Identify the dimension to split (usually the last one, representing time/samples)
split_dim = -1
num_samples = audio_tensor.shape[split_dim]
if num_samples == 0:
return [] # Return empty list if the dimension to split is empty
# Use torch.split to divide the tensor into chunks
# It handles the last chunk being potentially smaller automatically.
chunks = list(torch.split(audio_tensor, chunk_size, dim=split_dim))
return chunks

32
data.py
View File

@ -21,33 +21,25 @@ class AudioDataset(Dataset):
def __getitem__(self, idx): def __getitem__(self, idx):
# Load high-quality audio # Load high-quality audio
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True) high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
# Change to mono
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
# Generate low-quality audio with random downsampling # Generate low-quality audio with random downsampling
mangled_sample_rate = random.choice(self.audio_sample_rates) mangled_sample_rate = random.choice(self.audio_sample_rates)
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
low_quality_audio = resample_transform_low(high_quality_audio)
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate) resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
low_quality_audio = resample_transform_low(high_quality_audio)
low_quality_audio = resample_transform_high(low_quality_audio) low_quality_audio = resample_transform_high(low_quality_audio)
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
# Pad or truncate high-quality audio splitted_high_quality_audio = AudioUtils.split_audio(high_quality_audio, 128)
if high_quality_audio.shape[1] < self.MAX_LENGTH: splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(splitted_high_quality_audio[-1], 128)
padding = self.MAX_LENGTH - high_quality_audio.shape[1] splitted_high_quality_audio = [tensor.to(self.device) for tensor in splitted_high_quality_audio]
high_quality_audio = F.pad(high_quality_audio, (0, padding))
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
# Pad or truncate low-quality audio splitted_low_quality_audio = AudioUtils.split_audio(low_quality_audio, 128)
if low_quality_audio.shape[1] < self.MAX_LENGTH: splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(splitted_low_quality_audio[-1], 128)
padding = self.MAX_LENGTH - low_quality_audio.shape[1] splitted_low_quality_audio = [tensor.to(self.device) for tensor in splitted_low_quality_audio]
low_quality_audio = F.pad(low_quality_audio, (0, padding))
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
high_quality_audio = high_quality_audio.to(self.device) return (splitted_high_quality_audio, original_sample_rate), (splitted_low_quality_audio, mangled_sample_rate)
low_quality_audio = low_quality_audio.to(self.device)
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)

View File

@ -43,11 +43,11 @@ print(f"Using device: {device}")
# Parameters # Parameters
sample_rate = 44100 sample_rate = 44100
n_fft = 2048 n_fft = 128
hop_length = 256 hop_length = 128
win_length = n_fft win_length = n_fft
n_mels = 128 n_mels = 40
n_mfcc = 20 # If using MFCC n_mfcc = 13 # If using MFCC
mfcc_transform = T.MFCC( mfcc_transform = T.MFCC(
sample_rate, sample_rate,
@ -76,7 +76,7 @@ os.makedirs(audio_output_dir, exist_ok=True)
# ========= SINGLE ========= # ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True) train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
# ========= MODELS ========= # ========= MODELS =========
@ -115,61 +115,69 @@ scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min'
def start_training(): def start_training():
generator_epochs = 5000 generator_epochs = 5000
for generator_epoch in range(generator_epochs): for generator_epoch in range(generator_epochs):
low_quality_audio = (torch.empty((1)), 1) high_quality_audio = ([torch.empty((1))], 1)
high_quality_audio = (torch.empty((1)), 1) low_quality_audio = ([torch.empty((1))], 1)
ai_enhanced_audio = (torch.empty((1)), 1) ai_enhanced_audio = ([torch.empty((1))], 1)
times_correct = 0 times_correct = 0
# ========= TRAINING ========= # ========= TRAINING =========
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"): for high_quality_data, low_quality_data in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
# for high_quality_clip, low_quality_clip in train_data_loader: ## Data structure:
high_quality_sample = (high_quality_clip[0], high_quality_clip[1]) # [[float..., float..., float...], sample_rate]
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
# ========= LABELS ========= # ========= LABELS =========
batch_size = high_quality_clip[0].size(0)
batch_size = high_quality_data[0][0].size(0)
real_labels = torch.ones(batch_size, 1).to(device) real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device) fake_labels = torch.zeros(batch_size, 1).to(device)
# ========= DISCRIMINATOR ========= high_quality_audio = high_quality_data
discriminator.train() low_quality_audio = low_quality_data
d_loss = discriminator_train(
high_quality_sample,
low_quality_sample,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
# ========= GENERATOR ========= ai_enhanced_outputs = []
generator.train()
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
low_quality_sample,
high_quality_sample,
real_labels,
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
if debug: for high_quality_sample, low_quality_sample in tqdm.tqdm(zip(high_quality_data[0], low_quality_data[0]), desc=f"Processing audio clip.. Length: {len(high_quality_data[0])}"):
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}") # ========= DISCRIMINATOR =========
scheduler_d.step(d_loss.detach()) discriminator.train()
scheduler_g.step(adversarial_loss.detach()) d_loss = discriminator_train(
high_quality_sample,
low_quality_sample,
real_labels,
fake_labels,
discriminator,
generator,
criterion_d,
optimizer_d
)
# ========= GENERATOR =========
generator.train()
generator_output, combined_loss, adversarial_loss, mel_l1_tensor, log_stft_l1_tensor, mfcc_l_tensor = generator_train(
low_quality_sample,
high_quality_sample,
real_labels,
generator,
discriminator,
criterion_d,
optimizer_g,
device,
mel_transform,
stft_transform,
mfcc_transform
)
ai_enhanced_outputs.append(generator_output)
if debug:
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
scheduler_d.step(d_loss.detach())
scheduler_g.step(adversarial_loss.detach())
# ========= SAVE LATEST AUDIO ========= # ========= SAVE LATEST AUDIO =========
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0]) high_quality_audio = (torch.cat(high_quality_data[0]), high_quality_data[1])
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0]) low_quality_audio = (torch.cat(low_quality_data[0]), low_quality_data[1])
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0]) ai_enhanced_audio = (torch.cat(ai_enhanced_outputs), high_quality_data[1])
new_epoch = generator_epoch+epoch new_epoch = generator_epoch+epoch

View File

@ -20,12 +20,10 @@ def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tenso
mel_spec_true = mel_transform(y_true) mel_spec_true = mel_transform(y_true)
mel_spec_pred = mel_transform(y_pred) mel_spec_pred = mel_transform(y_pred)
# Ensure same time dimension length (due to potential framing differences)
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1]) min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
mel_spec_true = mel_spec_true[..., :min_len] mel_spec_true = mel_spec_true[..., :min_len]
mel_spec_pred = mel_spec_pred[..., :min_len] mel_spec_pred = mel_spec_pred[..., :min_len]
# L1 Loss (Mean Absolute Error)
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred)) loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
return loss return loss
@ -69,11 +67,11 @@ def discriminator_train(high_quality, low_quality, real_labels, fake_labels, dis
optimizer.zero_grad() optimizer.zero_grad()
# Forward pass for real samples # Forward pass for real samples
discriminator_decision_from_real = discriminator(high_quality[0]) discriminator_decision_from_real = discriminator(high_quality)
d_loss_real = criterion(discriminator_decision_from_real, real_labels) d_loss_real = criterion(discriminator_decision_from_real, real_labels)
with torch.no_grad(): with torch.no_grad():
generator_output = generator(low_quality[0]) generator_output = generator(low_quality)
discriminator_decision_from_fake = discriminator(generator_output) discriminator_decision_from_fake = discriminator(generator_output)
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake)) d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
@ -105,7 +103,7 @@ def generator_train(
): ):
g_optimizer.zero_grad() g_optimizer.zero_grad()
generator_output = generator(low_quality[0]) generator_output = generator(low_quality)
discriminator_decision = discriminator(generator_output) discriminator_decision = discriminator(generator_output)
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision)) adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
@ -116,15 +114,15 @@ def generator_train(
# Calculate Mel L1 Loss if weight is positive # Calculate Mel L1 Loss if weight is positive
if lambda_mel_l1 > 0: if lambda_mel_l1 > 0:
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output) mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality, generator_output)
# Calculate Log STFT L1 Loss if weight is positive # Calculate Log STFT L1 Loss if weight is positive
if lambda_log_stft > 0: if lambda_log_stft > 0:
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output) log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality, generator_output)
# Calculate MFCC Loss if weight is positive # Calculate MFCC Loss if weight is positive
if lambda_mfcc > 0: if lambda_mfcc > 0:
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output) mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality, generator_output)
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1 mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1 log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1