:albemic: | Real-time testing...
This commit is contained in:
parent
d70c86c257
commit
660b41aef8
@ -16,3 +16,37 @@ def stretch_tensor(tensor, target_length):
|
|||||||
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
|
tensor = F.interpolate(tensor, scale_factor=scale_factor, mode='linear', align_corners=False)
|
||||||
|
|
||||||
return tensor
|
return tensor
|
||||||
|
|
||||||
|
def pad_tensor(audio_tensor: torch.Tensor, target_length: int = 128):
|
||||||
|
current_length = audio_tensor.shape[-1]
|
||||||
|
|
||||||
|
if current_length < target_length:
|
||||||
|
padding_needed = target_length - current_length
|
||||||
|
|
||||||
|
padding_tuple = (0, padding_needed)
|
||||||
|
padded_audio_tensor = F.pad(audio_tensor, padding_tuple, mode='constant', value=0)
|
||||||
|
else:
|
||||||
|
padded_audio_tensor = audio_tensor
|
||||||
|
|
||||||
|
return padded_audio_tensor
|
||||||
|
|
||||||
|
def split_audio(audio_tensor: torch.Tensor, chunk_size: int = 128) -> list[torch.Tensor]:
|
||||||
|
if not isinstance(chunk_size, int) or chunk_size <= 0:
|
||||||
|
raise ValueError("chunk_size must be a positive integer.")
|
||||||
|
|
||||||
|
# Handle scalar tensor edge case if necessary
|
||||||
|
if audio_tensor.dim() == 0:
|
||||||
|
return [audio_tensor] if audio_tensor.numel() > 0 else []
|
||||||
|
|
||||||
|
# Identify the dimension to split (usually the last one, representing time/samples)
|
||||||
|
split_dim = -1
|
||||||
|
num_samples = audio_tensor.shape[split_dim]
|
||||||
|
|
||||||
|
if num_samples == 0:
|
||||||
|
return [] # Return empty list if the dimension to split is empty
|
||||||
|
|
||||||
|
# Use torch.split to divide the tensor into chunks
|
||||||
|
# It handles the last chunk being potentially smaller automatically.
|
||||||
|
chunks = list(torch.split(audio_tensor, chunk_size, dim=split_dim))
|
||||||
|
|
||||||
|
return chunks
|
||||||
|
32
data.py
32
data.py
@ -21,33 +21,25 @@ class AudioDataset(Dataset):
|
|||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
# Load high-quality audio
|
# Load high-quality audio
|
||||||
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
|
high_quality_audio, original_sample_rate = torchaudio.load(self.input_files[idx], normalize=True)
|
||||||
|
# Change to mono
|
||||||
|
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
|
||||||
|
|
||||||
# Generate low-quality audio with random downsampling
|
# Generate low-quality audio with random downsampling
|
||||||
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
mangled_sample_rate = random.choice(self.audio_sample_rates)
|
||||||
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
|
||||||
low_quality_audio = resample_transform_low(high_quality_audio)
|
|
||||||
|
|
||||||
|
resample_transform_low = torchaudio.transforms.Resample(original_sample_rate, mangled_sample_rate)
|
||||||
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
resample_transform_high = torchaudio.transforms.Resample(mangled_sample_rate, original_sample_rate)
|
||||||
|
|
||||||
|
low_quality_audio = resample_transform_low(high_quality_audio)
|
||||||
low_quality_audio = resample_transform_high(low_quality_audio)
|
low_quality_audio = resample_transform_high(low_quality_audio)
|
||||||
|
|
||||||
high_quality_audio = AudioUtils.stereo_tensor_to_mono(high_quality_audio)
|
|
||||||
low_quality_audio = AudioUtils.stereo_tensor_to_mono(low_quality_audio)
|
|
||||||
|
|
||||||
# Pad or truncate high-quality audio
|
splitted_high_quality_audio = AudioUtils.split_audio(high_quality_audio, 128)
|
||||||
if high_quality_audio.shape[1] < self.MAX_LENGTH:
|
splitted_high_quality_audio[-1] = AudioUtils.pad_tensor(splitted_high_quality_audio[-1], 128)
|
||||||
padding = self.MAX_LENGTH - high_quality_audio.shape[1]
|
splitted_high_quality_audio = [tensor.to(self.device) for tensor in splitted_high_quality_audio]
|
||||||
high_quality_audio = F.pad(high_quality_audio, (0, padding))
|
|
||||||
elif high_quality_audio.shape[1] > self.MAX_LENGTH:
|
|
||||||
high_quality_audio = high_quality_audio[:, :self.MAX_LENGTH]
|
|
||||||
|
|
||||||
# Pad or truncate low-quality audio
|
splitted_low_quality_audio = AudioUtils.split_audio(low_quality_audio, 128)
|
||||||
if low_quality_audio.shape[1] < self.MAX_LENGTH:
|
splitted_low_quality_audio[-1] = AudioUtils.pad_tensor(splitted_low_quality_audio[-1], 128)
|
||||||
padding = self.MAX_LENGTH - low_quality_audio.shape[1]
|
splitted_low_quality_audio = [tensor.to(self.device) for tensor in splitted_low_quality_audio]
|
||||||
low_quality_audio = F.pad(low_quality_audio, (0, padding))
|
|
||||||
elif low_quality_audio.shape[1] > self.MAX_LENGTH:
|
|
||||||
low_quality_audio = low_quality_audio[:, :self.MAX_LENGTH]
|
|
||||||
|
|
||||||
high_quality_audio = high_quality_audio.to(self.device)
|
return (splitted_high_quality_audio, original_sample_rate), (splitted_low_quality_audio, mangled_sample_rate)
|
||||||
low_quality_audio = low_quality_audio.to(self.device)
|
|
||||||
|
|
||||||
return (high_quality_audio, original_sample_rate), (low_quality_audio, mangled_sample_rate)
|
|
||||||
|
40
training.py
40
training.py
@ -43,11 +43,11 @@ print(f"Using device: {device}")
|
|||||||
|
|
||||||
# Parameters
|
# Parameters
|
||||||
sample_rate = 44100
|
sample_rate = 44100
|
||||||
n_fft = 2048
|
n_fft = 128
|
||||||
hop_length = 256
|
hop_length = 128
|
||||||
win_length = n_fft
|
win_length = n_fft
|
||||||
n_mels = 128
|
n_mels = 40
|
||||||
n_mfcc = 20 # If using MFCC
|
n_mfcc = 13 # If using MFCC
|
||||||
|
|
||||||
mfcc_transform = T.MFCC(
|
mfcc_transform = T.MFCC(
|
||||||
sample_rate,
|
sample_rate,
|
||||||
@ -76,7 +76,7 @@ os.makedirs(audio_output_dir, exist_ok=True)
|
|||||||
|
|
||||||
# ========= SINGLE =========
|
# ========= SINGLE =========
|
||||||
|
|
||||||
train_data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
|
train_data_loader = DataLoader(dataset, batch_size=1, shuffle=True)
|
||||||
|
|
||||||
|
|
||||||
# ========= MODELS =========
|
# ========= MODELS =========
|
||||||
@ -115,23 +115,29 @@ scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min'
|
|||||||
def start_training():
|
def start_training():
|
||||||
generator_epochs = 5000
|
generator_epochs = 5000
|
||||||
for generator_epoch in range(generator_epochs):
|
for generator_epoch in range(generator_epochs):
|
||||||
low_quality_audio = (torch.empty((1)), 1)
|
high_quality_audio = ([torch.empty((1))], 1)
|
||||||
high_quality_audio = (torch.empty((1)), 1)
|
low_quality_audio = ([torch.empty((1))], 1)
|
||||||
ai_enhanced_audio = (torch.empty((1)), 1)
|
ai_enhanced_audio = ([torch.empty((1))], 1)
|
||||||
|
|
||||||
times_correct = 0
|
times_correct = 0
|
||||||
|
|
||||||
# ========= TRAINING =========
|
# ========= TRAINING =========
|
||||||
for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
|
for high_quality_data, low_quality_data in tqdm.tqdm(train_data_loader, desc=f"Training epoch {generator_epoch+1}/{generator_epochs}, Current epoch {epoch+1}"):
|
||||||
# for high_quality_clip, low_quality_clip in train_data_loader:
|
## Data structure:
|
||||||
high_quality_sample = (high_quality_clip[0], high_quality_clip[1])
|
# [[float..., float..., float...], sample_rate]
|
||||||
low_quality_sample = (low_quality_clip[0], low_quality_clip[1])
|
|
||||||
|
|
||||||
# ========= LABELS =========
|
# ========= LABELS =========
|
||||||
batch_size = high_quality_clip[0].size(0)
|
|
||||||
|
batch_size = high_quality_data[0][0].size(0)
|
||||||
real_labels = torch.ones(batch_size, 1).to(device)
|
real_labels = torch.ones(batch_size, 1).to(device)
|
||||||
fake_labels = torch.zeros(batch_size, 1).to(device)
|
fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||||
|
|
||||||
|
high_quality_audio = high_quality_data
|
||||||
|
low_quality_audio = low_quality_data
|
||||||
|
|
||||||
|
ai_enhanced_outputs = []
|
||||||
|
|
||||||
|
for high_quality_sample, low_quality_sample in tqdm.tqdm(zip(high_quality_data[0], low_quality_data[0]), desc=f"Processing audio clip.. Length: {len(high_quality_data[0])}"):
|
||||||
# ========= DISCRIMINATOR =========
|
# ========= DISCRIMINATOR =========
|
||||||
discriminator.train()
|
discriminator.train()
|
||||||
d_loss = discriminator_train(
|
d_loss = discriminator_train(
|
||||||
@ -161,15 +167,17 @@ def start_training():
|
|||||||
mfcc_transform
|
mfcc_transform
|
||||||
)
|
)
|
||||||
|
|
||||||
|
ai_enhanced_outputs.append(generator_output)
|
||||||
|
|
||||||
if debug:
|
if debug:
|
||||||
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
|
print(f"D_LOSS: {d_loss.item():.4f}, COMBINED_LOSS: {combined_loss.item():.4f}, ADVERSARIAL_LOSS: {adversarial_loss.item():.4f}, MEL_L1_LOSS: {mel_l1_tensor.item():.4f}, LOG_STFT_L1_LOSS: {log_stft_l1_tensor.item():.4f}, MFCC_LOSS: {mfcc_l_tensor.item():.4f}")
|
||||||
scheduler_d.step(d_loss.detach())
|
scheduler_d.step(d_loss.detach())
|
||||||
scheduler_g.step(adversarial_loss.detach())
|
scheduler_g.step(adversarial_loss.detach())
|
||||||
|
|
||||||
# ========= SAVE LATEST AUDIO =========
|
# ========= SAVE LATEST AUDIO =========
|
||||||
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])
|
high_quality_audio = (torch.cat(high_quality_data[0]), high_quality_data[1])
|
||||||
low_quality_audio = (low_quality_clip[0][0], low_quality_clip[1][0])
|
low_quality_audio = (torch.cat(low_quality_data[0]), low_quality_data[1])
|
||||||
ai_enhanced_audio = (generator_output[0], high_quality_clip[1][0])
|
ai_enhanced_audio = (torch.cat(ai_enhanced_outputs), high_quality_data[1])
|
||||||
|
|
||||||
new_epoch = generator_epoch+epoch
|
new_epoch = generator_epoch+epoch
|
||||||
|
|
||||||
|
@ -20,12 +20,10 @@ def mel_spectrogram_l1_loss(mel_transform: T.MelSpectrogram, y_true: torch.Tenso
|
|||||||
mel_spec_true = mel_transform(y_true)
|
mel_spec_true = mel_transform(y_true)
|
||||||
mel_spec_pred = mel_transform(y_pred)
|
mel_spec_pred = mel_transform(y_pred)
|
||||||
|
|
||||||
# Ensure same time dimension length (due to potential framing differences)
|
|
||||||
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
min_len = min(mel_spec_true.shape[-1], mel_spec_pred.shape[-1])
|
||||||
mel_spec_true = mel_spec_true[..., :min_len]
|
mel_spec_true = mel_spec_true[..., :min_len]
|
||||||
mel_spec_pred = mel_spec_pred[..., :min_len]
|
mel_spec_pred = mel_spec_pred[..., :min_len]
|
||||||
|
|
||||||
# L1 Loss (Mean Absolute Error)
|
|
||||||
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
|
loss = torch.mean(torch.abs(mel_spec_true - mel_spec_pred))
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
@ -69,11 +67,11 @@ def discriminator_train(high_quality, low_quality, real_labels, fake_labels, dis
|
|||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
|
|
||||||
# Forward pass for real samples
|
# Forward pass for real samples
|
||||||
discriminator_decision_from_real = discriminator(high_quality[0])
|
discriminator_decision_from_real = discriminator(high_quality)
|
||||||
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
d_loss_real = criterion(discriminator_decision_from_real, real_labels)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
generator_output = generator(low_quality[0])
|
generator_output = generator(low_quality)
|
||||||
discriminator_decision_from_fake = discriminator(generator_output)
|
discriminator_decision_from_fake = discriminator(generator_output)
|
||||||
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
|
d_loss_fake = criterion(discriminator_decision_from_fake, fake_labels.expand_as(discriminator_decision_from_fake))
|
||||||
|
|
||||||
@ -105,7 +103,7 @@ def generator_train(
|
|||||||
):
|
):
|
||||||
g_optimizer.zero_grad()
|
g_optimizer.zero_grad()
|
||||||
|
|
||||||
generator_output = generator(low_quality[0])
|
generator_output = generator(low_quality)
|
||||||
|
|
||||||
discriminator_decision = discriminator(generator_output)
|
discriminator_decision = discriminator(generator_output)
|
||||||
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
|
adversarial_loss = adv_criterion(discriminator_decision, real_labels.expand_as(discriminator_decision))
|
||||||
@ -116,15 +114,15 @@ def generator_train(
|
|||||||
|
|
||||||
# Calculate Mel L1 Loss if weight is positive
|
# Calculate Mel L1 Loss if weight is positive
|
||||||
if lambda_mel_l1 > 0:
|
if lambda_mel_l1 > 0:
|
||||||
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality[0], generator_output)
|
mel_l1 = mel_spectrogram_l1_loss(mel_transform, high_quality, generator_output)
|
||||||
|
|
||||||
# Calculate Log STFT L1 Loss if weight is positive
|
# Calculate Log STFT L1 Loss if weight is positive
|
||||||
if lambda_log_stft > 0:
|
if lambda_log_stft > 0:
|
||||||
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality[0], generator_output)
|
log_stft_l1 = log_stft_magnitude_loss(stft_transform, high_quality, generator_output)
|
||||||
|
|
||||||
# Calculate MFCC Loss if weight is positive
|
# Calculate MFCC Loss if weight is positive
|
||||||
if lambda_mfcc > 0:
|
if lambda_mfcc > 0:
|
||||||
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality[0], generator_output)
|
mfcc_l = gpu_mfcc_loss(mfcc_transform, high_quality, generator_output)
|
||||||
|
|
||||||
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
|
mel_l1_tensor = torch.tensor(mel_l1, device=device) if isinstance(mel_l1, float) else mel_l1
|
||||||
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
|
log_stft_l1_tensor = torch.tensor(log_stft_l1, device=device) if isinstance(log_stft_l1, float) else log_stft_l1
|
||||||
|
Loading…
Reference in New Issue
Block a user