:albemic: | Tests.

This commit is contained in:
2025-03-25 19:50:51 +02:00
parent 7e1c7e935a
commit 54338e55a9
4 changed files with 21 additions and 17 deletions

View File

@ -38,9 +38,9 @@ device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
mfcc_transform = T.MFCC(
sample_rate=44100, # Adjust to your sample rate
sample_rate=44100,
n_mfcc=20,
melkwargs={'n_fft': 2048, 'hop_length': 512} # adjust n_fft and hop_length to your needs.
melkwargs={'n_fft': 2048, 'hop_length': 256}
).to(device)
def gpu_mfcc_loss(y_true, y_pred):
@ -49,7 +49,8 @@ def gpu_mfcc_loss(y_true, y_pred):
min_len = min(mfccs_true.shape[2], mfccs_pred.shape[2])
mfccs_true = mfccs_true[:, :, :min_len]
mfccs_pred = mfccs_pred[:, :, :min_len]
return torch.mean((mfccs_true - mfccs_pred)**2)
loss = torch.mean((mfccs_true - mfccs_pred)**2)
return loss
def discriminator_train(high_quality, low_quality, real_labels, fake_labels):
optimizer_d.zero_grad()
@ -99,7 +100,7 @@ dataset = AudioDataset(dataset_dir, device)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=128, shuffle=True)
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
# Initialize models and move them to device
generator = SISUGenerator()
@ -161,7 +162,7 @@ def start_training():
if debug:
print(d_loss, combined_loss, adversarial_loss, mfcc_l)
scheduler_d.step(d_loss)
scheduler_g.step(combined_loss)
#scheduler_g.step(combined_loss)
# ========= SAVE LATEST AUDIO =========
high_quality_audio = (high_quality_clip[0][0], high_quality_clip[1][0])