| Added app.py script so the model can be used.

This commit is contained in:
2025-06-06 22:10:06 +03:00
parent a135c765da
commit 2ded03713d
3 changed files with 88 additions and 9 deletions

View File

@ -50,3 +50,22 @@ def split_audio(audio_tensor: torch.Tensor, chunk_size: int = 128) -> list[torch
chunks = list(torch.split(audio_tensor, chunk_size, dim=split_dim))
return chunks
def reconstruct_audio(chunks: list[torch.Tensor]) -> torch.Tensor:
if not chunks:
return torch.empty(0)
if len(chunks) == 1 and chunks[0].dim() == 0:
return chunks[0]
concat_dim = -1
try:
reconstructed_tensor = torch.cat(chunks, dim=concat_dim)
except RuntimeError as e:
raise RuntimeError(
f"Failed to concatenate audio chunks. Ensure chunks have compatible shapes "
f"for concatenation along dimension {concat_dim}. Original error: {e}"
)
return reconstructed_tensor

60
app.py Normal file
View File

@ -0,0 +1,60 @@
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchaudio
import tqdm
import argparse
import math
import os
import AudioUtils
from generator import SISUGenerator
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--device", type=str, default="cpu", help="Select device")
parser.add_argument("--model", type=str, help="Model to use for upscaling")
parser.add_argument("--clip_length", type=int, default=256, help="Internal clip length, leave unspecified if unsure")
parser.add_argument("-i", "--input", type=str, help="Input audio file")
parser.add_argument("-o", "--output", type=str, help="Output audio file")
args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
generator = SISUGenerator()
models_dir = args.model
clip_length = args.clip_length
input_audio = args.input
output_audio = args.output
if models_dir:
generator.load_state_dict(torch.load(f"{models_dir}", map_location=device, weights_only=True))
else:
print(f"Generator model (--model) isn't specified. Do you have the trained model? If not you need to train it OR acquire it from somewhere (DON'T ASK ME, YET!)")
generator = generator.to(device)
def start():
# To Mono!
audio, original_sample_rate = torchaudio.load(input_audio, normalize=True)
audio = AudioUtils.stereo_tensor_to_mono(audio)
splitted_audio = AudioUtils.split_audio(audio, clip_length)
splitted_audio_on_device = [t.to(device) for t in splitted_audio]
processed_audio = []
for clip in tqdm.tqdm(splitted_audio_on_device, desc="Processing..."):
processed_audio.append(generator(clip))
reconstructed_audio = AudioUtils.reconstruct_audio(processed_audio)
print(f"Saving {output_audio}!")
torchaudio.save(output_audio, reconstructed_audio.cpu().detach(), original_sample_rate)
start()

View File

@ -69,14 +69,14 @@ debug = args.debug
# Initialize dataset and dataloader
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir, device)
models_dir = "models"
models_dir = "./models"
os.makedirs(models_dir, exist_ok=True)
audio_output_dir = "output"
audio_output_dir = "./output"
os.makedirs(audio_output_dir, exist_ok=True)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=1024, shuffle=True)
train_data_loader = DataLoader(dataset, batch_size=8192, shuffle=True, num_workers=24)
# ========= MODELS =========
@ -85,17 +85,17 @@ generator = SISUGenerator()
discriminator = SISUDiscriminator()
epoch: int = args.epoch
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
if args.continue_training:
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
epoch = epoch_from_file["epoch"] + 1
else:
if args.generator is not None:
generator.load_state_dict(torch.load(args.generator, map_location=device, weights_only=True))
if args.discriminator is not None:
elif args.discriminator is not None:
discriminator.load_state_dict(torch.load(args.discriminator, map_location=device, weights_only=True))
else:
generator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
discriminator.load_state_dict(torch.load(f"{models_dir}/temp_generator.pt", map_location=device, weights_only=True))
epoch_from_file = Data.read_data(f"{models_dir}/epoch_data.json")
epoch = epoch_from_file["epoch"] + 1
generator = generator.to(device)
discriminator = discriminator.to(device)