⚗️ | Experimenting...

This commit is contained in:
2025-02-10 19:35:50 +02:00
parent fb7b624c87
commit 1717e7a008
4 changed files with 82 additions and 84 deletions

View File

@@ -55,6 +55,11 @@ def generator_train(low_quality, real_labels):
optimizer_g.step()
return generator_output
def first(objects):
if len(objects) >= 1:
return objects[0]
return objects
# Init script argument parser
parser = argparse.ArgumentParser(description="Training script")
parser.add_argument("--generator", type=str, default=None,
@@ -72,17 +77,6 @@ print(f"Using device: {device}")
dataset_dir = './dataset/good'
dataset = AudioDataset(dataset_dir)
# ========= MULTIPLE =========
# dataset_size = len(dataset)
# train_size = int(dataset_size * .9)
# val_size = int(dataset_size-train_size)
#train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
# train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
# val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
# ========= SINGLE =========
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
@@ -112,31 +106,6 @@ scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min'
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
def start_training():
# Training loop
# ========= DISCRIMINATOR PRE-TRAINING =========
# discriminator_epochs = 1
# for discriminator_epoch in range(discriminator_epochs):
# # ========= TRAINING =========
# for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
# high_quality_sample = high_quality_clip[0].to(device)
# low_quality_sample = low_quality_clip[0].to(device)
# scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
# # ========= LABELS =========
# batch_size = high_quality_sample.size(0)
# real_labels = torch.ones(batch_size, 1).to(device)
# fake_labels = torch.zeros(batch_size, 1).to(device)
# # ========= DISCRIMINATOR =========
# discriminator.train()
# discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
# torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
generator_epochs = 5000
for generator_epoch in range(generator_epochs):
low_quality_audio = (torch.empty((1)), 1)
@@ -165,9 +134,15 @@ def start_training():
generator_output = generator_train(low_quality_sample, real_labels)
# ========= SAVE LATEST AUDIO =========
high_quality_audio = high_quality_clip
low_quality_audio = low_quality_clip
ai_enhanced_audio = (generator_output, high_quality_clip[1])
high_quality_audio = (first(high_quality_clip[0]), high_quality_clip[1][0])
low_quality_audio = (first(low_quality_clip[0]), low_quality_clip[1][0])
ai_enhanced_audio = (first(generator_output[0]), high_quality_clip[1][0])
print(high_quality_audio)
print(f"Saved epoch {generator_epoch}!")
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
#print(f"Generator metric {metric}!")