⚗️ | Experimenting...
This commit is contained in:
53
training.py
53
training.py
@@ -55,6 +55,11 @@ def generator_train(low_quality, real_labels):
|
||||
optimizer_g.step()
|
||||
return generator_output
|
||||
|
||||
def first(objects):
|
||||
if len(objects) >= 1:
|
||||
return objects[0]
|
||||
return objects
|
||||
|
||||
# Init script argument parser
|
||||
parser = argparse.ArgumentParser(description="Training script")
|
||||
parser.add_argument("--generator", type=str, default=None,
|
||||
@@ -72,17 +77,6 @@ print(f"Using device: {device}")
|
||||
dataset_dir = './dataset/good'
|
||||
dataset = AudioDataset(dataset_dir)
|
||||
|
||||
# ========= MULTIPLE =========
|
||||
|
||||
# dataset_size = len(dataset)
|
||||
# train_size = int(dataset_size * .9)
|
||||
# val_size = int(dataset_size-train_size)
|
||||
|
||||
#train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
|
||||
|
||||
# train_data_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
|
||||
# val_data_loader = DataLoader(val_dataset, batch_size=1, shuffle=True)
|
||||
|
||||
# ========= SINGLE =========
|
||||
|
||||
train_data_loader = DataLoader(dataset, batch_size=16, shuffle=True)
|
||||
@@ -112,31 +106,6 @@ scheduler_g = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_g, mode='min'
|
||||
scheduler_d = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_d, mode='min', factor=0.5, patience=5)
|
||||
|
||||
def start_training():
|
||||
|
||||
# Training loop
|
||||
|
||||
# ========= DISCRIMINATOR PRE-TRAINING =========
|
||||
# discriminator_epochs = 1
|
||||
# for discriminator_epoch in range(discriminator_epochs):
|
||||
|
||||
# # ========= TRAINING =========
|
||||
# for high_quality_clip, low_quality_clip in tqdm.tqdm(train_data_loader, desc=f"Epoch {discriminator_epoch+1}/{discriminator_epochs}"):
|
||||
# high_quality_sample = high_quality_clip[0].to(device)
|
||||
# low_quality_sample = low_quality_clip[0].to(device)
|
||||
|
||||
# scale = high_quality_clip[0].shape[2]/low_quality_clip[0].shape[2]
|
||||
|
||||
# # ========= LABELS =========
|
||||
# batch_size = high_quality_sample.size(0)
|
||||
# real_labels = torch.ones(batch_size, 1).to(device)
|
||||
# fake_labels = torch.zeros(batch_size, 1).to(device)
|
||||
|
||||
# # ========= DISCRIMINATOR =========
|
||||
# discriminator.train()
|
||||
# discriminator_train(high_quality_sample, low_quality_sample, scale, real_labels, fake_labels)
|
||||
|
||||
# torch.save(discriminator.state_dict(), "models/discriminator-single-shot-pre-train.pt")
|
||||
|
||||
generator_epochs = 5000
|
||||
for generator_epoch in range(generator_epochs):
|
||||
low_quality_audio = (torch.empty((1)), 1)
|
||||
@@ -165,9 +134,15 @@ def start_training():
|
||||
generator_output = generator_train(low_quality_sample, real_labels)
|
||||
|
||||
# ========= SAVE LATEST AUDIO =========
|
||||
high_quality_audio = high_quality_clip
|
||||
low_quality_audio = low_quality_clip
|
||||
ai_enhanced_audio = (generator_output, high_quality_clip[1])
|
||||
high_quality_audio = (first(high_quality_clip[0]), high_quality_clip[1][0])
|
||||
low_quality_audio = (first(low_quality_clip[0]), low_quality_clip[1][0])
|
||||
ai_enhanced_audio = (first(generator_output[0]), high_quality_clip[1][0])
|
||||
print(high_quality_audio)
|
||||
|
||||
print(f"Saved epoch {generator_epoch}!")
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-crap.wav", low_quality_audio[0][0].cpu(), high_quality_audio[1]) # <-- Because audio clip was resampled in data.py from original to crap and to original again.
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-ai.wav", ai_enhanced_audio[0][0].cpu(), ai_enhanced_audio[1])
|
||||
torchaudio.save(f"./output/epoch-{generator_epoch}-audio-orig.wav", high_quality_audio[0][0].cpu(), high_quality_audio[1])
|
||||
|
||||
#metric = snr(high_quality_audio[0].to(device), ai_enhanced_audio[0])
|
||||
#print(f"Generator metric {metric}!")
|
||||
|
Reference in New Issue
Block a user