⚗️ | Experimenting with other generator architectures.

This commit is contained in:
NikkeDoy 2024-12-21 23:54:11 +02:00
parent de72ee31ea
commit 1000692f32

View File

@ -1,27 +1,39 @@
import torch.nn as nn import torch.nn as nn
class SISUGenerator(nn.Module): class SISUGenerator(nn.Module):
def __init__(self, upscale_scale=1): # No noise_dim parameter def __init__(self, upscale_scale=1):
super(SISUGenerator, self).__init__() super(SISUGenerator, self).__init__()
self.layers1 = nn.Sequential( self.layers1 = nn.Sequential(
nn.Conv1d(2, 128, kernel_size=3, padding=1), nn.Conv1d(2, 128, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), # Activation
nn.BatchNorm1d(128), # Batch Norm
nn.Conv1d(128, 256, kernel_size=3, padding=1), nn.Conv1d(128, 256, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), # Activation
nn.BatchNorm1d(256), # Batch Norm
) )
self.layers2 = nn.Sequential( self.layers2 = nn.Sequential(
nn.Conv1d(256, 128, kernel_size=3, padding=1), nn.Conv1d(256, 128, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), # Activation
nn.BatchNorm1d(128), # Batch Norm
nn.Conv1d(128, 64, kernel_size=3, padding=1), nn.Conv1d(128, 64, kernel_size=3, padding=1),
# nn.LeakyReLU(0.2, inplace=True), nn.LeakyReLU(0.2, inplace=True), # Activation
nn.Conv1d(64, 2, kernel_size=3, padding=1), nn.BatchNorm1d(64), # Batch Norm
# nn.Tanh() nn.Conv1d(64, upscale_scale * 2, kernel_size=3, padding=1), # Output channels scaled
) )
self.upscale_factor = upscale_scale
def pixel_shuffle_1d(self, input, upscale_factor):
batch_size, channels, in_width = input.size()
out_width = in_width * upscale_factor
input_view = input.contiguous().view(batch_size, channels // upscale_factor, upscale_factor, in_width)
shuffle_out = input_view.permute(0, 1, 3, 2).contiguous()
return shuffle_out.view(batch_size, channels // upscale_factor, out_width)
def forward(self, x, scale): def forward(self, x, scale):
x = self.layers1(x) x = self.layers1(x)
upsample = nn.Upsample(scale_factor=scale, mode='nearest') upsample = nn.Upsample(scale_factor=scale, mode='nearest')
x = upsample(x) x = upsample(x)
x = self.layers2(x) x = self.layers2(x)
x = self.pixel_shuffle_1d(x, self.upscale_factor)
return x return x